
Brouwerian Counterexam ples
An SGyear-old but little-known method demonstrates

the lack of numerical meaning in many classical theorems.

MARK MAN DELKERN
New Mexico State University

Las Cruces, NM 88003

Not only did he launch a controversy which continues to the present day, but in his
critique of classical mathematics early in the cenhrry, L. E. J. Brouwer also initiated a

new mode of reasoning. In contrast to the idealistic thought common since Greek
times, characterized by the notion that truth exists independently of humans, Brouwer
realistically held as trme only what was currently known. Thus truth changes from day
to day, and also from person to person. Brouwer developed a type of counterexample
which shows when a given statement is not true in this realistic sense. A recent paper

[32] discussed, with no technical details, t]re general aspects of the controversy over
constructivity which ensued from Brouwer's work. This paper considers the technical
details involved in Brouwerian counterexamples; it tries to steer clear of polemics,

leaving readers to decide for themselves whether or not the counterexamples indicate
a need for constructive considerations in the practice of mathematics.

The term clnssical nwthanatics, as used here, refers to the sort of mathematics
taught in virhrally every school and college classroom in the world. Work in construc-
tioe mathematics, using only constructive methods, is (at least for the present) carried
on by only a very small minority of mathematicians.

There is a certain danger in devoting an entire paper to negativistic results, which
could give the erroneous impression that the purpose of constructive mathematics is to
consider pathological counterexamples (see Appendix). The only reason for these

counterexamples is to show that certain theorems in classical mathematics are not
constructively valid, and thus to indicate the need for their replacement by positive

constructive results. A few of these positive results are indicated here, but for a more

complete exposition the reader must consult the literature; for a thorough introduc-
tion, see [3] or [6].

A new kind of counterexample Brouwer's critique of many classical theorems, his

claim that they lacked numerical meaning, consisted of demonstrations showing that
their truth would imply solutions to problems for which, in fact, no solutions were
known. Thus he concluded that certain classical theorems could not be true, for if
they were true, many people would be trying to use them to solve the unsolved
problems. Such a demonstration is called a Brouwerian counteremm.pb; it differs from
an ordinary counterexample, which demonstrates that a given statement implies

another statement which is known to be false'

Brouwer's examples were typically constructed on an ad hoc basis, using a variety
of unsolved problems more or less at random-sometimes quite famous problems such

as "Fermat's Last Theorem," and sometimes problems remarkable only for their
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insignificance, such as questions concerning the digits in the decimal expansion of z.
More systematically, Errett Bishop [3] formulated several general onmiscience princi-
ples, each of which implies the solution to a vast number of unsolved problems, or at
least leads to certain information about such problems which in fact is not available. A
Brouwerian counterexample then becomes a demonstration that a certain statement
implies one of these omniscience principles. One advantage of this is that it shows
more clearly the nonconstructivities in classical mathematics, since tlere will always
be unsolved problems which the omniscience principles would solve. Here we first
give a few of Brouwer's original ad hoc examples, and then develop the systematic
formulation.

The least upper bound principle A characteristic and important theorem of classical
mathematics is the bast upper bound prirrciplz. To show its nonconstructive nature
(its lack of numerical meaning), we'll show that if it were true, it would provide a
finite method leading either to a proof of Fermat's Last "Theorem" or to an explicit
counterexample. Since no one knows such a method, no one can claim that the least
upper bound principle is true in a numerical sense. Fermat probably had no proof (see

[42, Ch. 13] and [44]), but if he did, then for him it was a "theorem", while we can
speak only of "Fermat's Last Problem."

Since Fermat's Last Problem concerns equations in integers, while the least upper
bound principle concerns sets of real numbers, we must somehow represent the
former by the latter. We'll construct a set S of real numbers by a sequence of steps, as

follows. We start with step number 3. Using only positive integers up to and including
3, we look for a solution to the equation r"+g":2", with n:3. Finding no
solution, we put the real number I/3 into our set S. (Even when any integers r,A,z
are allowed, there is no solution with n:3; see, for example [7, Th. U.9].) If we had
found a solution, we would have put the number L-l/s into S. This process for
constructing S continues; at the /cth step we consider all quadruples (r,V,z,n) of
positive integers up to k, with the restriction n ) 3. When we find no solution to the
Fermat equation, we put l/k into S; when we do find a solution, we put I - l/k into
S. This defines the set S; see Frcunn 2. (There are many ways to form a suitable set;
there is nothing special about the method used here.) Notice that the procedure at the
ftth step is'always a finite one, although the whole process is infinite.

Now we apply the hgpothesis that the least upper bound principle is true. We take
this assertion in the numerical sense that we can calculate least upper bounds; that is,
we can find explicit, arbitrarily close, rational approximations. Let f be the least upper
bound of the set S. For example, someone might specify the number f using a
decimal expansion. While such an expansion is infinite, only a finite process is required
to calculate any given digit. We need calculate only one digit to tell whether t is less

than 0.6 or more than 0.4. In the first case, it is easy to predict with absolute certainty
that the Fermat equation will never be solved (with n ) 3); you have proved Fermat's
Last Theorem. In the second case, by the definition of least upper bound there is a
number r in the set S that is more than 0.4. Now this number r must be oI the form
L - L/k. l,ooking at this integer /c, you know exactly where to find, using a finite
process, a solution to the Fermat equation, a counterexample to Fermat's last
Theorem. In either case you have solved Fermat's Last Problem. It is convenient to
restate this counterexample concisely as follows.

Exanryle l. The bast upper bound principle is nonconstructive; it would imply a
solution to Fermat's Last Problem.

How do constructivists answer the classicist who (omnisciently) looks at Example I
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FICURE 1

L. E. ]. Brouwer (I88i-1966). Ttris a*icle crcmmemorates the SOth anniversary of Brouwer's
seminrl doctoral thesis.

and says. " Well, it's perfectly obvious that the least upper bound of the set S is either
I/3 or 1," Their answer is, "If you could realiy tell which one of these alternatives
actually holds, you wouldn't be here discussing it with us. You would be at your desk

writing either your proof of Fermat's Last Theorem or your proof that yoll have a
finite procedure for fincling a counterexample"" Saying that a number with certain
properties, if it exists, must be eqr.ral to one or the cther of two known numbers, is

quite different from saying that such a mrmber acfuaily exists. \lhen a constmctivist
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FICURE 2.

Here are a few of the points, and possible points, of the set S constructed in Example I by
searching for solutions oI the Fermat equation. The points begin at l/3 afi proceed to the left.
However, if a solution is ever found, then points suddenly begin to appear at the far rigfut of tbe
interval. What is the least upper bound oI S?

says that a mrmber is either this or that, he is prepared to say which; or at least to give
a finite procedure by which it may be determined.

Thus a person who really had a constmctive proof of the least upper bound
principle, a finite procedure for calculating rational approximations to the least upper
bound, would immediately begrn applying it to the set S to find a solution to Ferrrat's
Last Problem, and similarly for hundreds of other unsolved problems in mrmber
theory and analysis.

How does constructive analysis proceed without the important least upper bound
principle? By restricting to a certain class of sets, which suffice for all constructive
applications, one obtains a constructive zubstitute; see Theorem 3 below.

Counterexamples such as the above are the basis of Brouwer's critique of classical
mathematics, begun in 1907 [2], and the motivation behind modern Bishoptype
constructive mathematics [3]. In the following sections we consider a few more
informal counterexamples, and then, using these as a guide, adopt a precise formula-
tion. The resulting analysis will eliminate the apparent dependence on specific
unsolved problems. Thus, while Example I shows that the least upper bound principle
is nonconstructive because it implies a solution to Fermat's Last Problem, it remqins
nonconstructive even if tomorrow somebody solves the problem.

Numerical meaning The general notion of numerical meaning was discussed in [32];
here we try to make this idea more precise. It is the strict constructive notion of
numerical meaning which allows us to proceed from the existence of a least upper
bound to a solution of Fermat's Last Problem. The least upper bound is a real
number; thus we must formulate a precise definition of a constructive real number.
This is nothing other than the same real number that is used throughout classical
analysis, both elementary and advanced, but with a stricter interpretation. A real
number is a Cauchy sequence of rational numbers. Each term of the sequence is a
rational number, an explicit quotient of integers. There is no difficulty or controversy
about the ordinary integers, their rational quotients, and the finite operations among
these. But the idea of an infinite sequence is more difficult. The notion of infinity has

had a long and interesting history, and has been discussed by thinkers from the
ancient Greeks to modern astronomers. In mathematics there is a sharp contrast
between the idea of a potential infinity and that of an achral inffnity. This is, perhaps,

the cnrx of the controversy between classical (idealistic) mathematics and constructive
(realistic) mathematics. In the latter, only a potential inffnity is considered. This
means that while the definition of a real number allows you to calculate however
many terms of the approximating sequence you want (and have time for), still you can
never expect to calculate all the terms.

A real number might be defined by a sequence of approximating rational numbers
expressed as ffnite decimals. For example, ,/2 .*t be deffned by the sequence
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l, t.4, 1.4t, t.4I4, 1.4t42, t.4I42t, 1.4t42L3, . . . .

This short list of approximations is the result of only the first few applications of the
well-known nrle which explicitly defines each term of the sequence. A sequence is a
function, or rule, rather than an infinite list; the latter has only a potential existence.
We will focus attention on such mles. Thus the least upper bound principle (if
constructive) must provide a finite procedwe by which any desired approximation to
the least upper bound may be calculated. Example I shows that the classical theorem
on least upper bounds provides no such procedure. The notion of constructive
procedure requires that it be finite only in prirwiple. Errett Bishop expressed this as

follows. "How do you know whether a proof is constructive? Try to write a computer
program. If you can program a computer to do it, it should be constructive. Notice I
said write the program. Don't necessarily run it on the computer and wait around for
the result." [4]

Trichotomy of real numbers This is a precept of classical mathematics so ingrained
in the thought of working mathematicians and students that assaults on its validity are
usually met not with rigorous defensive measures, but (even more efiectively) with
complete disregard. That any given real number is either positive, negative, or zero
may seem so familiar an idea as to be intuitively true, but nevertheless it is
nonconstructive. To show this, it suffces to show that the trichotomy principle,
interpreted so as to have numerical meaning, would imply the solution to an unsolved
problem. For the latter we take the perfect number problnn. A positive integer is
perfect if it is the sum of its proper divisors, for example 6 : I + 2 + 3, 28: I + 2 +
4 + 7 + 14, 496, etc.; see [7; f 1.25-11.26]. Nobody knows whether or not there exists
an odd perfect number. Rather than constructing a set to establish a connection
between the principle under test and the unsolved problem, as in the last example, in
this case we need a real number. It requires only a finite procedure to test an integer
for perfection; the results are used to define a sequence {ao}. At the kth step, if no
odd perfect number < /< is found, define c1 : 0, but if one is found, define ao : l/Zk.
Now define

o: i o*.
ft:r

Clearly a > 0; applying the hypothesis that the trichotomy principle has numerical
meaning, either a : 0 or a > 0. In the first case it follows that each a1 is 0; thus we
have a theorem, every perfect number is even. In the second case at least one of the
terms c1 must be positive, and this leads us straight to an explicit construction of an
odd perfect number. (We have used constructive notions of positive real numbers and
convergent sequences and series, which are discussed below.) Thus we have proved
the following.

Example 2. The principb of trichotorny of real num.bers is nonconstructive; it
would imply a solution to the perfect number problem.

Discontinuous functions It is a common practice in elementary analysis courses to
demonstrate the importance of continuity conditions in certain theorems by giving
examples of discontinuous functioni, showing what can go wrong when continuity is
not present. However, there are problems in the construction of such discontinuous
functions.

Consider a typical function often mentioned in calculus classes; it is defined on the
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unit interval [0,1] by

f(0) :0
f(*):l wheneverr>o'

This definition presents serious constructive diffculties. As we saw in Example 2,

there is no general finite procedure for deciding whether a given real number in the
interval is zero or positive. Thus there is no general finite procedure for deciding, for a
given point r in the interval, what value / assigns to r. This means that while the
definition above does define a function, this function is not defined on the entire
interval, but only at those points for which one knows one or the other of the two
alternatives, zero or positive. Example 2 constructs a number in the interval for which
neither alternative is known.

There is nothing nonconstmctive about the definition above, it defines a function
which may even be sketched as shown in Frcuns 3, but this function is not defined on
the entire unit interval. Thus a Brouwerian counterexample on this topic will concem
the following statement.

FICURE 3.

A good try at defining a discontinuous function on the closed unit interval, but it doesn't work.
There are points r for which we don't know whether r:0 or r > 0; at such points the function
is not defined.

Drscor.rrrxuous FuNCTIoN PnrNcrpr,r (DFP). There erists a furwtion f defined on
the cbsed unit interaal [O,I] such that f(0):0, and f(x): I wheneoer x> 0.

This statement, although it uses some of the same phrases, is distinctly weaker than
the statement that the definition above defines a function on the entire interval; the
latter statement has already been shown to be nonconstructive by Example 2. The
statement DFP does not state that the conditions /(0) : 0, and f(x):l for r > 0,

define a function on the entire interval, but rather that some function exists, defined
somehow on all of [0, l], which has these values at these points, whatever other values

it may have at whatever other points.
For a Brouwerian counterexample to DFP, we will use another unsolved problem

from number theory, the Goldbach Conjecture. This conjecture says that every even

number greater than 2 can be represented as the sum of two primes, such as

4 : 2 + 2, 6 : 3 + 3, . . . , f928 : 1201 + 727, etc. Goldbach stated this in Moscow, in
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1742 (: 1429 + 313), but to this day no one knows whether it is true or false; see [7,
p. 30] or [4], p. 47].Use the method of Example 2; test each even number in
succession to obtain a sequence {c1} of nonnegative rational numbers, and a real
number a : Ia6, where co represents the result of testing the /cth even number,
beginning with 4. For any given even number, it requires only a finite calculation to
test the Goldbach Conjectrue in that instance. If for every even number > 2 there do
exist two prime summands, then all ap will be 0 and thus a :0. But if the Goldbach
Conjecture ever fails, then some c1 will be l/Zk, and a>0. Thus we have con-
structed a real number a in the unit interval such that the Goldbach Conjecture is

true if and only if a:0.
Now apply the hypothesis that DFP is true, and use it to calculate /(a). The

resulting information about the Goldbach Conjecture is a bit different from that
obtained in the first two examples. This means that the nonconstmctivity of DFP is

different from that of the least upper bound principle and trichotomy; DFP is a less

powerful hypothesis. Calculate a rational approximation to f(a) suficient to de-
termine whether f(") < I or /(a) > 0. In the first case a cannot be positive and thus
from the elementary constructive properties of real numbers it follows that a : 0; the
Goldbach Conjecture is true. The second case is different; we can conclude that a
cannot be zero, but it does not follow that a > 0. (The constmctive ordering of the
real line is discussed below. The difference arises because a -< 0 is an essentially
negativistic statement (equivalent to the impossibility of a > 0), whereas a > 0 is an
affirmative statement which requires a construction that is not available in this
situation.) So in the second case we can only conclude that the Goldbach Conjecture
cannot be true, without, however, finding an explicit counterexample. This strange
sort of situation has not been known to arise in number theory or analysis. Neverthe-
less, such a partial solution to an unsolved problem would certainly be interesting, and
of pragmatic significance in focusing frrrther research. Thus our derivation of such
unavailable information about the Goldbach Conjecture serves sufficiently well to
establish the nonconstructivity of DFP; we have proved the following.

Em,rnple & The discontimnus furwtion prirrcipb is nonconstructive; it would
imply either a proof of the Goldbach Conjecture or a proof of its falsity (without an
explicit counterexample).

The weaker conclusion in this example, compared with the first two, is not due to
properties of the Goldbach Conjecture, but rather of continuity. We could equally
well have used the Goldbach Conjecture in the first two examples. The systematic
formulation of Brouwerian counterexamples will clarify these matters by separating
the principles under test from the unsolved problems.

The intermediate value theorem Before systematizing the method of Brouwerian
counterexamples, we'll discuss one which subjects the intermediate value theorem to a
test for numerical meaning, relating it to the decimal expansion of n. The inter-
mediate value theorem says that a continuous function which is positive at the left end
of an interval, and negative at the right, must be zerc at some point between. See, for
example I22, p. f901. This theorem was first proved rigorously (in the classical sense)

by Bernard Bolzano, in Bohemia, in 1817 [8]. Bolzano was one of the first modern
mathematicians who tried to eliminate geometric intuition from proofs; he might well
have appreciated the constructive approach of this century; see [, p. 15], [21], and

[26]. The nonconstructivity of the intermediate value theorem was discussed infor-
mally in [32].

Since there is no connection between intermediate values and questions about
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digits in the expansion of a', the need for a systematic analysis becomes even more
pressing. Questions about these digits were a favorite of Brouwer's; for example, see

[5, p. 6]. They are of no significance; their only value is that it is unlikely that anyone
will ever try to solve them, and thereby necessitate a revision of all the ad hoc
examples in which they are used.

Here we'll show that the intermediate value theorem, if constructively valid, would
lead to an answer to the question " If the sequence of digits 123456789 ever appears
in the decimal expansion of z, and the digit 9 in the first such sequence occurs at the
nth place, will n then be even or odd?" Notice that no integer n is actually defined by
this question. Only iI someday someone finds a sequence 123456789 will n then be
defined. An answer to the question would be only a prediction whether, in this event,
n will be even or odd. This is a much weaker question than whether or not such a

sequence of digits does occur. The use of the weaker question reflects nothing about
the numbeln, but rather about the intermediate value theorem under test, which is
not enough to answer the stronger question.

To apply the intermediate value theorem, we must define a continuous function,
and to define this function, we first define a real number B. This number is defined by
an infinite series, and this in turn is based on the decimal expansion of z. Define

o- $ o*
n - ,r rro,

where the factors ao are integers to be defined in a moment. This is almost like giving
a decimal expansion, but with an important difference: the integers cp may be
positive or negative. The rule for a1 is as follows. If, in the decimal expansion of rr,
the kth digit is at the end of a sequence L23456789, and this is the frst zuch

sequence, then a* is I when k is even, but - I when k is odd; otherwise, c* is 0.

Because the sequence {de} is bounded, the series converges and defines the real
number B. Since we know that no sequence 123456789 occlus in at least the first few
thousand digits, B is a very small number; but we don't know whether it is positive,

negative, or zero.
To define a continuous function / on the closed unit interval [0, I], we first give f

the values

f(0):1
f(L/s):f(z/s):B

/(r): - I
and then complete the deffnition of f by using straight lines between these points. It
must be shown that it is indeed possible to define constructively a continuous function
in this way, but we postpone this until a later section. This is no minor point to be
glossed over, for some similar constructions, such as the one discussed above in
connection with DFP, are rwt constructively valid, and one must distinguish carefrrlly.

Frcunr 4 shows three views of this frrnction, corresponding to three possibilities for
the number B, but it is dangerously misleading. We cannot say that one of the cuwes
shown represents f. Example 2 shows that we do rwt, in general, know which
possibility holds for a given real number B. In fact, the figure represents precisely

those cases in which we are not interested, where there is no unsolved problem. When
constructing Brouwerian counterexamples, the figures typically only remind us of
what we don't know.

Now we apply the intermediate value theorem to the function / in order to "solve"
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FICURI 4
Three dangerously misleading views of the function / used in Example 4. Where /crosses the
axis, nobody knows.

the "digits of zr " problem. Since the function f has values both above and below the
axis, the intermediate value theorem claims to provide a speci{ic crossing point, a
number r for which f(x):0. To investigate the numerical meaning of the inter-
mediate value theorem, we interpret this claim in a strict constructive sense-we
suppose that an explicit nrle is given for the construction of r. II r is given by a
decimal expansion, we then calculate the first digit. (We do not mean to imply that all
real numbers have constructively defined decimal expansions, for there are some
problems about this; see [36]. Nevertheless, using these expansions serves srfficiently
well to demonstrate the method, which is essentially the same no matter how the real
number r is approximated.) If the first digit is 5 or less, then it is clear that B cannot
be positive, and it follows that the number n in the "digtt of rz " question (were it to
exist) would be odd. On the other hand, if this digit is more than 5, then n would be
even. Note that Frcunn 4 is useful in visualizing the proof, but this is only because we
are under the spell of the intermediate value hypothesis.

Thus tle intermediate value theorem, if constructive, would lead to a solution to the
"digits of rz" problem. Since, in fact, we have no such solution, we conclude that the
intermediate value theorem is constructively invalid. This result is recorded as follows:

Exampb 4. The intmrwdiate oahrc theoren is nonconstructive; it would imply a

solution to the "digits of z" problem.

Using sequences to encode unsolved problems To analyze the nature of a Brouwerian
counterexample, notice that Example I can be broken down into two distinct parts.

First we construct a set S which represents the (unsolved) Fermat Problem. Then we
use the "theorem" under investigation, in this case the least upper bound principle, to
obtain information about this set, thereby "solving" the unsolved problem. The set S

plays merely an intermediary role; for other examples other matlematical objects may
be used. A set is used in Example I because the least upper bound principle is about
sets.

It is convenient and helpful to use only a few standard objects for these examples.
Surprisingly, they can almost all be handled with a (seemingly) very simple object, an
ordinary infinite sequence of integers, and even then using only two integers, 0 and l.
In fact, a sequence is really not so simple an object; the catch is in the (potentially)

11
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infinite process which defines the sequence. Since each of us is a merely finite being,
no one can actually carry out the infinite process to see what happens. Only
occasionally can we predict what would happen; that is the great accomplishment of
mathematics, transcending the finiteness of human existence to obtain accurate
predictions for infinite processes.

Consider a typical sequence each of whose terms is either 0 or 1. A proof that all
the terms are zero constifutes a proof of some theorem, while the existence of a term
equal to I would be a counterexample (in the usual sense). By mere calculation using
the rule defining the sequence, we might find the first million terms to be all 0, but we
have no way to tell what might happen in the nsxl rnillion, or further. The essence of
a typical theorem in number theory or analysis is prediction No one has ever proved
anything by calculating all the terms of an infinite sequence, only by predicting the
outcome of such potentially infinite calculations.

The significant fact about these simple sequences is that most of the unsolved
problems of number theory and analysis can be encoded using them. To encode
Fermat's Last Problem using a sequence, we define the term a n as 0 in the first case

indicated in Example l, and as 1 in the second case. If you can prove that all the
terms of the sequence are 0 (that is, predict in a convincing way that each term
calculated, no matter how far into the future, will be 0), then you will have proved
Fermat's Last Theorem. On the other hand, if someone ever calculates a term that
turns out to be l, then he or she will have a counterexample to Fermat's Last
Theorem (in the ordinary sense), and can say that Fermat's Last Theorem is false. It is
also conceivable (although less likely) that someone could prove that Fermat's Last
Theorem is contradictory; then again it would be false, but in a different sense, as

discussed above in connection with Example 3, and below in connection with WLPO.

Decision sequences These sequences of 0's and l's are so useful for investigating the
numerical meaning of mathematical statements, and for analyzing the nature of
Brouwerian counterexamples, that it is convenient to adopt a few conventions for
their use; in this way we'll see the similarity and relationship between different
counterexamples. While it is possible to use sequences with any integers as terms,
positive, negative, or zero, we will find it much simpler to use only sequences of 0's
and l's. These sufice for all presently known counterexamples, although one should
be prepared for unforeseen complications which might arise in the future. This choice
of only two values represents the situation where we use some finite process to look
for something (as in the examples above) and either we find it or we don't; the 0 or I
simply records our results. There are counterexamples in which more values may be
convenient; for example, 0, * 1, and I (which we used in the definition of B in
Example 4). However, the systematic use of a single type of sequence has advantages,

such as in the comparison of counterexamples, which outweighs this convenience. In
situations where a term - I in a sequence might be handy, we can use instead a
factor such as ( - 1)" elsewhere (as in Example 4* below). Thus our decision
sequences will consist only of 0's and l's. Similarly, sequences with at most one term
equal to I have often been useful for counterexamples, but again these are easily

converted to examples using decision sequences, by the device used in Example 9
below.

Example I was typical in that the searches were cumulative; at each step the search

included all previous searches. In practice, there would be no need to repeat all the
previous work, but it was convenient to express the results that way, because iI one

search is successfrrl (the result recorded as a 1), then all succeeding searches will be
also. Thus the sequence of recorded results consists of an initial segment of 0's, and
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then (sometimes) a I occurs, after which all the remaining terms are also I's. In
Example l, Fermat's Last Theorem is true if and only if the sequence consists only of
0's, and it is false (in the strong sense of an explicit counterexample) if and only if
there exists a I in the sequence. In view of these considerations we adopt the
following.

Definition. A, decision seguence is a nondecreasing sequence {a"} of 0's and I's.

By "nondecreasing" we mean that ar(o.+r for all n. The only question of
interest for a given decision sequence is whether or not I's begin to appear
somewhere. It is convenient to assume that decision sequences under consideration
begin with a 0, for otherwise tlere is no problem.

Omniscience principles Decision sequences form the connecting link between non-
constructive classical theorems and unsolved problems. This link is made precise by
formulating general statements about decision sequences. In Example I, for example,
a solution to an unsolved problem results if we can tell whether or not a certain
decision sequence contains a l. On the other hand, the least upper bound principle, if
tme in a numerical sense, would provide precisely that information for any decision
sequence. Thus we formulate the following:

Lrurrnp PnrNcrpr,e or OMNrscrENcn (LPO). Gioen ang decision sequenne {a^},
there is a fi,nite procedue which results eithn in a proof that an:0 for all n, or in
the construction of an integer n such that an: I.

One usually says only "either il on:O or some an:I". The explicit finite
procedure, and the proof or construction, are implied. From a classical point of view,
it is obvious that either all tlle terms are zero, or there is a 1. How can anyone imagine
a situation in which neither of these altematives is true? Such a situation would be one
instance of what is referred to as'the "Middle" inthe Principb of ExcludedMiddtp.
This principle, which we'll refer to as EM, concerns not only decision sequences, but
states that any (meaningful) statement is either true or false. Aristotle formulated this
principle, but used it only in finite situations, in which it is constructively valid. When
it is (inappropriately) applied to the mathematics of the infinite, it leads to results such
as the least upper bound principle, the trichotomy principle, the discontinuous
frrnction principle, and the intermediate value principle, which, as we have seen, are
nonconstructive. The principle of excluded middle is discussed further in [32, pp.
275-2761. Bishop referred to EM (with a reformulation) as the Principle of Omnisci-
ence (13, p. 9] or [6, p. ll]); LPO is a special case which applies only to denumerable
problems. To interpret LPO as stating that some statements are true or false requires
a bit of care. LPO says that for any decision sequence, the statement "some term has
value 1" is either true or false. "True" must be taken in the strict sense that an integer
n is constructed and a proof is given that a.: l; then "false" leads to a proof that all
en: O. On the other hand, the statement "every term has value 0" does not produce
the same results, because its falsity only involves a certain contradiction, from which
the constmction of an integer n, such that a, : l, does not follow. This is a good
example of the difference between the existential and universal quantifiers, when used
constructively.

Though it may seem obvious from a classical viewpoirlt, LPO appears in an entirely
different light when viewed constructively. Classically, since according to EM every
statement is either true or false, the middle alternative may be described as saying
that both possibilities mentioned in LPO are false, and that indeed is unthinkable. But
the constructive interpretation of the middle alternative is simply that we do not

13
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know, and this is not only possible, but is actually the present situation regarding
many unsolved problems.

The term "omniscience" is used in naming these principles to remind us that we
are not omniscient! The position of LPO in Example I is now clear; we (effectively)
showed first that the least upper bound principle implies LPO, and then we showed
that LPO implies a solution to Fermat's Last Problem. It is convenient to state and
prove explicitly the ffrst part of Example I as follows:

Ernnryle 1*. The least rryer bound prirrcipb is nonconstructive; it implies LPO.

Proof. I*t { a" } be any decision sequence, and let S denote the set of values of its
terms. The set S has at least one element, and at most two, but in general we do not
know exactly how many; in any event it is a nonvoid bounded set of real numbers.
Using the least upper bound principle as an hypothesis, let f denote the least upper
bound of S. We need only calculate a rational approximation within 1/6 to tell
whether the real number t is less tJlran 2/3 or more than I/3. (For more details, see

the Constructive Dichotomy Iemma below.) In the ftrst case, it is clear that each term
in the given decision sequence is zero. (This does not mean that we actually calculate
all the infinitely many terms of the sequence and check each one, but rather that we
are able to predict, with absolute certainty, that no matter how many terms may be
calculated, no matter by whom, and no matter how far into tJre future, each term will
turn out to be 0.) In the second case, using the definition of least upper bound, we
construct a number r in S that is more lhan l/3. Since this number r must be a term
of the given decision sequence, it must be equal to I. Thus we have arrived at one or
the other of the two alternatives stated in LPO.

Similarly, we restate Example 2 as follows; the proof is left as an exercise.

Exanryle 2*. The principb of trichotorng of real runnbers is nonconstmctive; it
implies LPO.

Ihe power of LPO It is not the situation that if Fermat's Last Theorem is proved
tomorrow, then the least upper bound principle would suddenly be constructive.
Example 1* shows not only that the least upper bound principle implies a solution to
Fermat's Last Problem, as shown in Example l, but that it implies LPO, which would
yield solutions to hwtdreds of unsolved problems. Here we'll give only a few
examples.

Exanryb 5. LPO implies solutions to each of the following problems:
(a) Fermat's T qst Problem.
(b) The Perfect Number Problem.
(c) The Goldbach Conjecture.
(d) The Riemann Hypothesis.

Proof. (a) We showed above how Fermat's Last Problem may be encoded as a
decision sequence {a,}, such that if dI o,:0, then Fermat's Last Theorem is true,
but if some term ek: I is ever cdculated, it will lead to a counterexample. Thus LPO
solves the problem.

(b) r"d (c) are left as exercises.

(d) The Riemann Hypothesis is a long-standing, unsolved problem involving the
Riemann zeta furction f(s) of the complex variable s; this function plays an
important role in the theory of prime numbers [39, pp. 424'431], [a3]. The hypothesis
states that, aside from a sequence of "trivial" roots, each root s: o I it oI ((s) lies on
the vertical line o: l/Z.For each positive integer n, a finite calculation allows one to
determine either that lo-l/21<L/n for all nontrivial roots with ltl<n, or that
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lo - I/21 > 0 for some such root. Define a,:0 or an: l, accordingly. If all an:0,
then for each nontrivial root s: o + if we have lo - l/21<l/n for all n > lf l, and
therefore o : l/2; this proves the Riemann Hypothesis! On the other hand, if some

an: l, then we have a counterexample,

These few examples should suffce. Most problems in number theory and analysis
can be encoded as decision sequences to which LPO applies. For some problems it is
a bit more difficult. For example, the question of whether or not there are infinitely
many twin primes leads us to construct a sequence of 0's and I's (not nondecreasing)
and to ask whether there are infinitely many I's. LPO answers this question also; see

the section below on the BolzaneWeierstrass Principle.

Discontinuous functions and WLPO A close look at Example 3 leads us to formulate
another omniscience principle, and to restate the example.

WBex LlurrBp PnrNcrpr-r or OuNrscrrNcn (WLPO). Given any decision sequence

{a"}, there is a finite procedue which produces either a proof that an:0 for all n,
or a proof that "4.:0 for all n" is contradictory.

Emm.ple 3*. The discontinuow function prirwipb is nonconstructive; it implies
WLPO.

The power of WLPO is less than that of LPO, although it is enough to establish the
nonconstructivity of certain classical theorems. The conjechrres listed in Example 5
can each be encoded into a decision sequence { o, } such that the conjecture is true if
and only if all a" :0. For any one of these, WLPO would provide a finite procedure
leading either to a proof of the conjecture or to a proof of its falsity, but without a

counterexample. Although this would not settle the problem completely, such an
application of WLPO would be of great pragmatic value. It would either give you a
proof, or show that a proof was impossible, in which case you could give up trying to
ftnd a proof, and concentrate frrrther efforts on the search for a counterexample. Thus
Brouwerian counterexamples using WLPO are sufrcient to indicate the nonconstruc-
tivity of certain classical theorems and "constructions."

The intermediate value theorem and LLPO Considering Example 4, one might
reasonably ask "What does it matter whetler the first sequence 123456789 (if any) in
the digits of z ends at an even or an odd place?" This is another good reason to free
Brouwerian counterexamples from such ad hoc considerations. A close look at
Example 4 shows that the intermediate value theorem leads to another omniscience
principle.

LBssnn Lrurrnp Pnrxcrpln or OunrscrnNcn (LLPO). Given any decision sequence

{a,}, there is a finite procedure which predicts whether the first integer lc (if any),
such that ak:1, is even or odd.

Thus the first part of Example 4 may be expressed as follows.

Exam.ple 4*. The internediate oalue theorcm is nonconstructive; it implies LLPO.

Proof. l*l (a") be a decision sequence. This sequence has no - I's, as did the
sequence used in Example 4, and thus we use here a different definition for B:

@

B: T
n:l

(- r)" o,
10"
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The definition of the function f is the same as before; Frcunn 4 gives us an
omniscient view of its properties. The intermediate value theorem, if constructive,
would give an explicit procedure for the construction of a point r with f(x) :0. It is

convenient to use the constructive dichotomy lemma (see the next section below);
tlrus either x < 2/3 or r > l/3. II x < 2/3, then it is clear that B cannot be positive,
and it follows that the first integer /< such that a*: f (if any) would be odd. On the
other hand, iI r> l/3, then /c would be even.

The power of LLPO is even less than that of WLPO, but still sufficient to
demonstrate the nonconstructivity of certain classical theorems, because there is in
fact no such finite procedure available to us. The relevance of LLPO for Brouwerian
counterexamples depends on the fact that people agree that the discovery of such a
general finite procedure seems extremely unlikely, even impossible.

Constructive constructions It is time to discuss the basic constructive properties of
real numbers and functions which were used in the above counterexamples. The title
of this section reminds us of the fact that in classical mathematics the term "construc-
tion" appears frequently, but rarely in the sense used here.

For a complete description of the construction of the real numbers, one must refer
to Chapter 2 of [3] or [6], and for the constmction of the extended real numbers, to

[29]. Here we consider briefly only a few of the most important concepts. A real
number is a Cauchy sequence of rational numbers. Thus, given any real number,
arbitrarily close rational approximations are always available. The notion oI positioe
real numbsr is crucial, and closely connected with the idea of constructive existence.
When we say that a real number r is positioe, we mean that we have explicitly
constructed a positive integer /< and a rational approximation q within l/k oI r, and
have proved that q > l/k.(Since g is a quotient of integers, this is a good example of
an application of the fundamental constructivist thesis, that all concepts should be
reduced to elementary calculations with the integers.) Thus, to prove a real number r
is positive requires a concrete construction; a proof that r ( 0 is contradictory will not
sufice. (On the other hand, the definition of r ( 0, while given in an affirmative
manner, is equivalent to the statement that r > 0 is contradictory; see [3, Lm. 5, p.

241 or [6' Ch. 2,2.I8].)
With this definition of positirse, and the resultant notion of strict inequality, we

consider now one of the most frequently used constructive properties of real numbers.

It is the main constructive substitute for trichotomy, and reflects the essence of a real
number, given only by approximations.

CoNsrnucrrvn Drcnorouy Lnvue. lf a and b are real nuntbers uith a <b, then

for anV real number r, either x < b or x > a.

Proof. T\e given condition a<b means that b-a>O; thus a positive integer k
can be constructed with b - a> 2/k.It follows that there is a rational number s such
tlrat a + L /k < s < b - | /k. Choose a rational approximation r to within I /k oI the
given real number r. Since trichotomy does hold for the rational numbers, we have

eitlrer r(s, in which case r<b, or we have r>s, in which case r>a. For more
details, see [3, Cor., p. 24]or16,Ch.2,2.f7]. The lemma is illustrated in Frcunn 5.

Constructive definitions for convergence of sequences and series are also straight-
forward. One says that a sequence { r, } of real numbers conoerges to a real number r
iI one has constructed a sequence { No } of corwsrgence parotwters with the property
that lr-r.l < l/lc whenever n)-No. This is exactly the same as the classical

definition, except that classically one says something Iike "for all k there exists N,,
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(a)

(b)

FICURE 5

Classical trichotomy vs. constructive dichotomy of the real numbers. In the omniscient view (a),
the real line is divided precisely into three distinct nonoverlapping parts. The constn-rctive view
(b) reveals only two cases. They are not mutually exclusive; however, the region of overlap may
be as small as desired, according to the degree of precision required.

such that ..." without being careful to explain in what sense "there exists" is to be
understood. Classically one allows convergence to be proved by assuming that such
parameters No do not exist and deriving a contradiction, while constructively these
parameters must be explicitly constructed by means of a finite procedure. The
convergence of an infinite series reduces in the usual way to convergence of the
sequence of partial sums.

We can now justifu the definition of a continuous function by means of straight
lines, as in Examples 4 and 4* . we have the function f defined clearly enough on the
three subintervals [0,l/3], lL/3,2/3], and [2/3,1]. However, these subintervals do
not constitute the entire interval [0, 1], because we have no finite procedure which
determines in which subinterval a given point lies. (A slight modification of Example
2* shows that such a procedure would imply LPo.) we give only a brief sketch of the
definition of f. The important conditions, which do hold here, are that uniformly
continuous frrnctions are used on each subinterval, and that they connect properly. To
define / at an arbitrary point r of [0, l] means to grve an approximation to f(r) to
within e, for any e > 0. We may assume that r < 2/3.The other case given by the
dichotomy lemma, when r > I/3, is similar. Using the dichotomy lemma aqain, we
have either x < I/3 or x > l/3 - e/6.In the first case we have the value of f already
defined, while in the second case it suffices to use B as the required approximation to
/(r). We leave the remaining details, including the continuity of f, as an exercise for
the reader (who may wish to consult Chapter 2 of [3] or [6]). An alternative method
for constructing such functions is given in Example f4.28 of [31].

Using the constructive dichotomy lemma, we can replace many nonconstructive
classical theorems by constmctive substitutes which are fully adequate for the
constructive development of analysis. The intermediate value theorem is replaced by a
constructive theorem which, given any small positive number e, constructs a point r
at which l/(r)l< e. This is [3, Ch. 2, ex. l1], or [6, Ch. 2,4.8); we give only a brief
sketch of the proof, ieaving the reader to fill in the details. Use the uniform continuity
of / to construct I > 0 such that l/(r) - ffu)l< e whenever lx - Al< E, and divide
the interval into n subintervals, each of length less than 6. At each subdivision point
the dichotomy lemma determines either that f has value less than e or that / has
value more than 0. At the ends of at least one subinterval we must obtain opposite
determinations; at the left end of the first such subinterval we find a suitable point r.
Thus we have the following.

Tnnonru l. lf f is a unifonrily contintnus funrtion on a closed bounded intensal

Lo,bf, uith f(a)>O and f(b)<0, thm for ang e>O there erists a point x in the
intqoal such that lf(r)l<..
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As for any theorem in constructive mathematics, the phrase "there exists" appear-
ing above is to be understood in the strict constmctive sense; in this case, from the
definition of / and the other data given, an explicit finite procedure is obtained which
constructs the point r.

Sometimes the intermediate value theorem is also expressed in the classically
equivalent form of its contrapositive, as, for example, in [20, p. 80]. Constmctively,
the contrapositive of a statement follows from the statement, but is not an equivalent.
One form of contrapositive of Theorem I states that a function bounded away from
zero cannot assume opposite signs at the endpoints. We prove a stronger version of
this in the next theorem, which seems not to have appeared previously. A function /
is said tobe neoer zero on a set S if l/(r)l>0 for every x in S; it is said to haoe
constant sign on S if /(r).ffu)>- 0forall r and y in S.

Tnponnrr 2. lf a furction f is continu.ous qnd naoer 0 on an interoal la, bl, then f
has corwtant sign on lo,bj.

Proof. Since lf@)l> 0, it follows that either f(a)> 0 or /(o)<0 (use a rational
approximation). We need consider only the case /(c) > 0; the other case is similar.
Let y be any point of the interval; either f(A)> 0 or /(y)<0. Suppose the second
case occurs; then the sets U: {r: f(r) < 0} and V: {x '-f(r) 

> 0} are nonvoid open
subsets of la,bl which cover the entire interval. By the constructive connectivity
theorem [27, Thm. 2], these sets have a common point, which is absurd. Thus the fint
case must obtain, and /(y) > 0.

Other constructive forms of the intermediate value theorem are also available; some
are listed in [3, p. 59] and [6, p. 63]. This multiplicity of constructive forms is typical.
AJter the fracturing of a classical theorem by a Brouwerian counterexample, constrrc-
tive workers pick up the pieces and remold them into a number of different
constructively valid theorems, each displaying a different aspect of the situation.

The Ieast upper bound principle also has a powerful constructive substihrte. We
restrict tlre theorem to totally bounded sets. A set S is said to be totallg bounded rt,
given any e ) 0, we can construct a finite subset F such that every point of S lies
within e of some point of F. The maximum of the points in F gives us an

approximation to the least upper bound of S to within e. Since giving arbitrarily close

approximations to a real number is equivalent to defining it, we say that the least

upper bound of S exists. We state the result as follows.

Tnponru 3. Eoerg rwtooid totallg bounded set of real rnnnbers has a least uppr
bourd. and a geatest lnoer bound.

The details are in [3, Thm. 3, p. 34] or [6, Ch. 4, 4.3]. For least upper bounds and
greatest lower bounds in the extended real number system, see [28] and [29]; for
alternative constructive notions, see [3], sec. 4].

The procedures produced by the above theorems might be quite lengthy; for some
comments on this, see [3, p.3] or [6, p. 6], and [5]. tn an important application, rather
than giving a solution on a hand calculator in a half a minute, the procedures could
lead instead to years of work trying to write programs efficient enough to produce the
solution on a large computer in only a month. Nevertheless, we maintein the
distinction between an infinite calculation, which we have absolutely no hope of
achrally carrying out, and a ffnite process, however long. The important questions on
the effciency of procedures belong to t}re second phase of the constructivization of
mathematics. It is too soon to demand progress on this problem from the very fer
presentday constructivists, More help is needed-invitedl-urgently awaited!-1n-
haps it will come from among the readers of this Mecazrrvp.
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Twin primes and the Bolzano-Weierstrass theorem A famous unsolved problem in
number theory is whether or not there are infinitely many twin primes of the form p
and p * 2, such as 3 and 5, 5 and 7, lI and 13,..., 2N267 and 209269, etc. See, for
example [7, p. 3l] and [42, Ch. 1]. Although one might wish to utilize this problem in
a Brouwerian counterexample, a difficulty arises. At first glance neither LPO nor the
other principles mentioned above seem to imply a soluuon to this problem. The
BolzanoWeierstrass principb, although unrelated to any problem in number theory,
presents some similar dificulties; although it clearly implies LPO, the converse is not
immediate. The difficulties, which stem from the need to consider arbitrary sequences
of positive integers, are resolved by the following.

TnBonru 4. The follauing are equioalent.
(a) LPO. Limited Principle of Omniscience. For ang decision sequence {a^},

either all a n-- O qr sun& a n: l.
(b) BSP. Bounded Sequence Principle. Ang sequence of positioe integers is either

bounded or unbounded.
(c) KSP. Constant Subsequence Principle. Any bounded sequence of positioe

integerc hos a constant subsequence.
(d) BWP. BolzanqWeierstrass Principle. Ang bounded seqtmnce of real nunbers

has a conoergent subsequence.
(e) MSP. Monotone Sequence Principle. Ang bounded marwtone sequene of real

numbers com)erges.

We give here only a sketch of the proof that the Corwtant Subsequence Prirwiplz
implies the Bolzarw-Weierstro.$s Prirwipb. The proof of BWP proceeds in essentially
the same manner as in most elementary analysis texts, by interval-halving. Using the
constructive dichotomy lemma, we may assume that the "halves" of the interval have
a small overlap, and thus one can tell in which of these halves each term of the given
sequence { r" } lies. Constructive danger is first sighted at the point of deciding which
half contains infinitely many terms of the sequence. Here KSP navigates an omniscient
course. Define pn:L or pn-- 2 according as r, lies in the left or right haU. Since the
sequence (p") is bounded, KSP provides a constant subsequence; this corresponds to
a subsequence of [r, ] which lies wholly in one haU of the interval, towards which we
should steer. The reader can try the rest of the proof as an exercise, or refer to [33].

We now consider the twin prime problem; extending Example 5.

Exanryb 6. LPO implies a solution to the twin prime problem.

Proof. Construct a sequence { p" } of positive integers as follows; if both n and
n * 2 are prime, define p" : n, and otherwise p.: l.There are infinitely many twin
primes il and only if the sequence { p" } is unbounded. Thus the Bounded Sequence
Principle would yreld a solution to the twin prime problem.

Because of this example, one might say that the Bolzano-Weierstrass Principle and
the Monotone Sequence Principle are nonconstructive because they each imply a
solution to the Twin Prime Problem. The Bounded Sequence Principle may also be
used in connection with other questions in number theory, such as whether or not
there exist infinitely many even numbers which are sums of two primes.

The limited principle of existence Brouwerian counterexamples utilizing the non-
construcuve omniscience principles LPO, WLPO, and LLPO quite clearly demon-
strate the nonconstructivity of classical theorems, because there are unsolved
problems in analysis and number th-ty for which these principles would yield
solutions or information not achrally available. There are other classical theorems,

19
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however, which imply principles involving decision sequences which certainly seem
nonconstructive, and for which no proofs are at hand, and yet for which there are no
known unsolved problems whose solution they would provide. Some of these princi-
ples relate to very central problems in constructive mathematics. In this section we
discuss one of these, LPE, which involves fundamental properties of the real numbers,
and in a later section another, WLPE, which is related to the constructivity of
continuity theorems.

Tnr Lrnarrrp Pnrncrpr.n or ExrsrnNce (LPE). Given any decision sequence {a"},
for which it is contradictory that an:O for all n, there is a finite procedure which
results in the construction of an integer n such that a.: l.

The contrast of conditions in LPE evokes the sharp antithesis between classical and
constructive mathematics; between pseudoexistence, derived from a proof by con-
tradiction, and constructive existence, derived from an explicit finite process. How-
ever, we have no example of an unsolved problem whose soluUon would be given by
LPE. Thus a counterexample involving LPE, such as in the next section below,
provides less conclusive evidence of nonconstructivity than one involving the other
omniscience principles. Still, a finite procedure as specified in LPE seems, from a
constructive viewpoint, very unlikely. [n any event, a counterexample involving LPE
has pragmatic value in that it tends to limit further efforts to prove the conjecture and
intensifies efforts to find a Brouwerian counterexample in the strict sense. LPE is
sometimes referred to as Markov's Principle. In recursive function theory, in contrast
to the strict Bishoptype constructive mathematics discussed in this paper, arguments
are made for the plausibility of LPE, and it is often used as an axiom.

Consider a decision sequence {c"} of the sort considered in LPE: it is contradic-
tory that an:O for all n; yet we have no proof that there exists an integer n such
that a,: I' Using the method of the above counterexamples, we obtain a real
number

San
": ,,!, d'

which is clearly ) 0 but cannot be 0, because then all the terms c, in the decision
sequence would be necessarily 0. On the other hand, we have no proof that c > 0, for
this would mean t}lat we had constructed some term an:\. Since a bears to 0 a
relation not covered by the conventional terminology and symbols, we adopt the
following.

Definition. A real number o will be said lobe aLmast positioe when a > 0 and it is

contradictory that a :0. This condition will be written a'> 0.

With this terminology, LPE has a simple expression: eoerg alntast positioe real
rwmber is positioe.

Irrational numbers When forming definitions for the constructive development oI
mathematics, one has a fairly wide choice. This is because the classical definitions
typically have a variety of classically equivalent, but constructively quite distinct,
formulations, and one must exercise great care in choosing a definition with useful
numerical meaning. One example, in a sense the first to arise following the generation

of the real number system out of the rationals, is the definition of irrational number.
Consider a real number t, and two forms of the classical definition:

(i) For every rational number q, the equality r: q is contradictory.
(ii) For every rational number q, the inequality lx - ql > 0 holds.
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Although these two conditions are classically equivalent, they are constructively quite
different, as the following example shows.

Exarnple 7. The statement " If x is a real rutmber such that the equalitg r: q is
contra.dictory for eoery ratiorwl rwrnber q, then lx - ql> O for eoerg rationn I q " is
nonconstructive; it implies LPE.

Proof Assuming the statement in quotes, we will obtain a proof of LPE. Let {o" }
be a decision sequence such that it is contradictory that df on:O, and let r be the
real number defined by

-: S o"€^ 3r2"
First we show that r satisfies condition (i). Let q be a rational number and suppose

that r: q. Since trichotomy holds for the rationals, we have either r: 0 or r > 0. In
the first case it follows that all a n: 0, a contradiction. In the second case, the decision
sequence becomes constantly I from some point on, and the sum of the series has the
form r : ,1, /2k where k is the largest integer such that a r,: O.But such a value for
r cannot be rational, so again we have a contradiction. Thus condition (i) is satisfied.
By hypothesis, r satisfies condition (ii). Since g :0 is rational, it follows that r > 0,
and there exists an integer n such that o,,: l. This proves LPE.

Nevertheless, even with the strict definition (ii), one has no difficulty finding a
plentiful supply of irrational numbers. For example, the usual proof that 1E is
irrational, while not constructive, becomes so with only a little more care. The familiar
classical proof, that for any integer p and any integer g + 0, the numbers p2/q2 und
2 are distinct, is constructively valid; it involves only integers, about which there are
no constructive complicailons. The definition oI tl2 presents no difficulties; for
example, decimal approximations suffice, since the precise nrle for the determination
of each approximation involves only finite decimals. To show that r/i is inational in
the strong sense ofrcondition (ii) above, we must show that for any p and q, the
ineqrrality lp/g-rlZlr0 holds; this means we must construct a positive integer k
wrth lp/q - ,lil, L/k.lt sufices to consider the case | < p/q < 2,Ior otherwise one
simply takes k: 3. What the traditional proof actually shows, using Euclid's Funda-
mental Theorem of Aritlwrwtic, is that pz and Zqz are distinct integers (since there are
an even number of factors 2 in the unique prime decomposition of p2, but an odd
number in the decomposition of 2q2). Thus these integers difier by at least l, and we
have

lp/q - ,/zl.lp/q + ,lrl. q, : lp, - 2qrlr_ t.

Since 0 <lp/q +,lZl<4 it follows that

lp/q - rlzl, t/qq'
and we may take k:4q'. This is typical of much of classical mathematics, which,
along with many nonconstructivities, does contain a vast amount of numerical
meaning which merely needs to be made explicit, although this usually requires more
effort than in this example.

Omniscience principles and real numbers Each of the four omniscience principles
so far discussed has an equivalent formulation involving the ordering of the real
numbers. It is convenient to have these formulations available, for ease in constructing

21



22 MATHEMATICS MACAZINE

counterexamples, and for finding relationships between the various omniscience
principles.

Tnnonru 5. Each of the onutiscietrce prirwiples listed belno hq"s the tuo equio-
almt fomn^tlations indicated.

(a) The Limited Principle of Omniscience (LPO).
(i) For ang d.ecision sequence {a^}, either all a,: O or some an: L.

(ii) For ang real number r, either r ( 0 or r > 0.
(b) The Weak Umited Principle of Omniseience (WLPO).

(i) For ang decision sequente {a,}, eithn all an:0 or it is contradictory that
aII a n: O.

(ii) For ang real rntmber x, either r < 0 or r . > 0.
(c) The Lesser hmited Principle of Omniscience (LLPO).

(i) For ang decision seguenae {a*}, either the first integerk (if arui, such that
at : l, is eDen, or it i"s odd.

(ii) For ang real number x, either x 40 or x > O.

(d) The Limited Principle of Existence (LPE).
(D For any decision sequetwe {a ,\ , if it is contra.dictorg thot all a n: 0, than

som.e an:7.
(ii) For ang real number x, if x. > O, then x > 0.

From this theorem it follows that LPO implies WLPO, that WLPO implies LLPO,
and that LPO is equivalent to WLPO and LPE combined. The theorem is easily
verified using the following two lemmata connecting real numbers and decision
sequences.

Lpuue l. Fcyr ang real ru.rmber r there exists a. corresponding decisian sequetuce

{a n\ such that
(i) r < O if and onlg if all en: O

(ii) r > O if and onlg if sonw an: l.
Conousely, for anE decision segttarce {a,} there exists a conesponding rcal

nuntbsr r satisfuing these hoo conditions.

Proof. L,et r be a given real number. For each positive integer n, the constructive
dichotomy lemma provides a finite procedure which results in one of two conclusions,
either r <I/n, or r>0. Define a,:0 or an-- I accordingly, continuing with the
later choice once it occurs; this defines a decision sequence {o"}. If all a,:0, the
dichotomy lemma always leads to the first alternative; thus r < L/n for all n, and it
follows that r ( 0. The converse is clear. If r > 0, then there erists an integer n such
that r > l/n. At the nth step in the construction of the decision sequence, the second
alternative is necessitated; thus some a,:1. The converse to this is also clear.

Conversely, given a decision sequence {a"}, define

So,+: )* 
3r2"'

The two conditions are easily verified.

The next lemma is useful in connection with LLPO. The strangely hypothetical
condition "the first integer lc (if any), such that ak: L, is even" is more conveniently
expressed by the straightforward affirmative condition "an: an*t for all even n".

Lnurue 2. For ong real rurmber x th.ere exists a corresponding decision seqtwnce

{a^} such that
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(i) r < O if and onlg if a,: en+t fot all euen n
(ii) r > O if and. onlE if a,: en+t for all od.d n.
Conoersely, for any decision sequawe {a,} there exists a conesponding real

nwnber x satisfging these two conditiarw.

Proof. For a given real number r, the construction of a suitable decision sequence
is left as an exercise; see [3], sec.2.6]. Conversely, given a decision sequence {a,},
define

23

00

r:l
n: I

( - l)"*to,
n

The elementary topology of the real line A typical theorem found in elementary
analysis courses is the following; see, for example U8, 3.19.6].

Tns opnN hvrrnver- Hvporrrrsrs. Any nonvoid open set on the real hne is the
union of an at most countable family of disjoint open intervals.

Exanryle 8. The opm intensal hEpothesis is nonconstructive, it implies LPO.

Proof. The hypothesis is nonconstructive even if limited to bounded sets, and even
iI any family of disjoint open intervals, not necessarily countable, is allowed. We
assume the open interval hypothesis and derive a proof of LPO. It is convenient to use
Theorem 5; thus for any real number r we must show either r < 0 or r > 0. Define

a:lxl; then y)0 and it will suffice to show that either y>0 or y:0. Using the
dichotomy lemma, we may assume y < I, for if E > 0 then there is nothing more to
prove. Consider the set

u:(-r,s)u(o,r).
Clearly U is an open set. (In fact, it is a countable, even ffnite, union of open intervals,
but they are not necessarily disjoint. Disjointness is the crucial part of the statement
being tested; it determines the connected components of a set.) By hypothesis, U has
a decomposition U: Uo/o into disjoint open intervals. Since the point l/2kes in U, it
must lie in one of the intervals ro; this interval has the form (a, b). Applying the
constructive dichotomy lemma, either a < 0 or a> - l. In the first case the point 0
lies in U, and it follows that y > 0, while in the second case it follows that y:0. This
proves LPO. The set U is illustrated in Frcunr 6.

-l

FICURE 6.

Two views of the open set U: (- f, y) U (0, f) used in Example 8. If the number g is 0, then
U consists of two disjoint open intervals, but if g is positive, then U is the entire interval
( - f , l). We have no way to determine that one of these cases applies. What are the connected
components of U?



24 MATHEMATICS MACAZINE

However, most constructively important open sets on the line can be resolved into
countably many disjoint open intervals; see [29] and [30]. For other open problems on
the topology of the line in need of constructive work, see [f0] and [3f].

Counterexamples in algebra A well-known classical theorem in elementary abstract
algebra states that every field has a characteristic which is either 0 or a prime p. (The
characteristic is the least positive integer zn such fhat m - e:0, where e is the
identity of the field, if such an integer exists, and 0 when no such positive integer rn
exists. See, for example [2, pp. 386-392] or [45, pp. 91-93].)

Exarnplp 9. The statement "Eoery field has a characteristic uhich is either 0 or a
prime" is nonconstructive; it implies LPO.

Proof. Let {a*} be a decision sequence, let {p,} be the ordered sequence of all
positive primes, and define

A : {0} U tpr,; ar,-t < ar,} .

Note that A has at least one element and at most two, but we do not know which.
(The inequality is a device used with decision sequences to indicate conveniently "the
first k such that a*: I (if any)" and, for the sake of uniformity in counterexamples,
to alleviate the need for "sequences of 0's and l's with at most one term equal to 1".)
In the domain Z of integers, let P be the subring generated by A, and let D be the
quotient rngZ-/P. Then D is an integral domain; the proof (a rocky shallows) is left
for the reader. Thus D has a quotient field F. Apply now the hypothesis that F has a
characteristic. If this characteristic is 0, then in the decision sequence ,\ on:O. But
if this characteristic is a prime, with position k in the sequence {p"}, then ar,:L.
Thus the hypothesis implies LPO.

Whether or not D is itself a field is also a mystery. For more details, and some
related positive constructive results, see [25] and [35]. Using, in place of {p,}, the
sequence of primes having residue I modulo 4, and considering the polynomial
x2 + l, one may prove the following. (Hint: see [7, Thm. f3.2].)

Exnnryl"e 10. The statement "EoerA polgrwmial oDer a field is either ineducibLe or
can be factored into ineducibb polgrwm.ials " is nonconstructive; it implies LPO.

Continuity One of the oldest constructivity problems is whether or not every
real-valued function on the closed unit interval is continuous. We formulate this
problem as follows.

Cournrurrv PnrNcrpln (CP). Every real-valued function on the closed unit interval
is continuous.

The typical classical counterexample to this principle is constructively invalid, as

shown above in the section on discontinuous frrnctions. Brouwer [3] proved CP. His
proof, however, was not constructive in the strict sense; it used methods of question-
able constructivity (which are still used in intuitionistic mathematics). Expositions of
Brouwer's proof may be found in [9, Ch. 3] and [23, Ch. 3].

Since CP is classically false, we consider only the following (classically true) weak
mutation of CP:

Lrurrno ColqrrNurrv PnrNcrpr.s (LCP). Every real-valued ftrnction on the closed
unit interval, which is nondecreasing and approximates intermediate values, is con-
tinuous.
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By nandecreasing we mean that f(r) </(y) whenever r4g. Approximates inter-
rnediate oalues means that if /(r) < tr </(g) and e > 0, then there exists a point z in
the interval such that /(a) is within e of tr; (cf. Theorem l). Classically, for
nondecreasing functions, this is equivalent to attaining intermediate values exactly.
Thus LCP is a partial converse to the intermediate value theorem; classical proofs are
forrnd in some calculus texts, for example 122, p. L921.

A Brouwerian counterexample to LCP is available, but, as for the counterexample
above concerning the irrationals, not in the strict sense. It does not relate LCP to an
unsolved problem, but to a principle, which, in the fashion of LPE, only "seems"

nonconstructive. Thus we enter here into recent results about which there is room for
difference of opinion. The principle involved is a weak form of LPE, and a converse to
a weak form of constructive dichotomy. An equivalent form of the constructive
dichotomy theorem is: if c 10, then for any real number r, either r > 0 or x < c. A.

weak form of this is: if c > 0, then for any real number r, either r.> 0 or r <.c (for
this notation see the section on LPE above). The converse to this is the following.

TnB Wrex Lrurrrp Pnrxcrpr,n or ExrsrnNcn (WLPE). If c is a real number such
that, for any real number r either r.> 0 or r <.c, then c > 0.

Any real number c which satisfies the condition " for any real number r either
r.> 0 or r <.c" is said tobe pseudoaositioe. Thus WLPE has the simple expression
"every pseudo-positive real number is positive." Clearly, any pseudo-positive real
number is almost positive; thus LPE implies WLPE. For a more complete discussion
of LPE and its weaker versions, see [34].

The structure of WLPE strongly suggests that it is nonconstructive; it purports to
derive quite affirmative information, the construction of specific integers which
demonstrate that c is positive, from a mere dichotomy of negativistic conditions.
However, this is somewhat speculative and WLPE will require more time for a

definitive evaluation. Nevertheless, taking the notion of norv:orwtructiae in the broad
sense, that a classical theorem is reduced to an elementary, simply expressed, classical
property of the real numbers which, from our extensive experience with similar
properties, seems to preclude all possibility of constructive proof, we have the
following counterexample to LCP. For the proof, see [3], Thm. 16.5].

Exrnrryle lL. The limited continuity principle is nonconstructive; it is equivalent
to WLPE.

Appendix. Negativistic counterexamples vs. positive constmctive developments
There is a danger in devoting an entire paper to negativistic counterexamples. As
Errett Bishop has written, "The counterexamples are deceitful. The reader is asked
not to form t}te impression that the pupose of constructive mathematics is to consider
pathological numbers. The only reason for discussing such numbers is to show that
certain statements are not constructively valid" [3, p. 60] [6, p. 65]. The danger is less

today, however, than in 1967 when the above quote appeared. Prior to that time one
had only Brouwer's critique (providing the crucial motivation for the constructiviza-
tion of mathematics), certain intuitionistic results (often mixed with nonconstmctive
elements such as free choice sequences), some idealistic logical considerations using
formal systems (an approach diametrically opposed to Bishop's strict constructivist
thesis), and results in recursive function theory (extensive, but only semi-constructive,
because of restricted concepts of number and function, and some use of nonconstruc-
tive reasoning). But until 1967 there were few systematic, strictly constructive
advances. Thus it was important that Bishop try to correct the prevalent misunder-
standings. At this time, however, we have available Bishop's monumental work [3],

25
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which constructivizes a large portion of analysis, and indicates the direction for
frrrtler positive constructive work.

The purpose of this article is to describe Brouwer's critique of 80 years ago,
showing the nonconstructivities in classical mathematics. This critique must be
evaluated in the crucially different presentday context, in which there are available
not only powerful methods for the constructive development of mathematics, but also
suficient examples of their application. The references below include only a few
recent constructive advances; their bibliographies provide more extensive references.
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