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CONNECTIVITY OF AN INTERVAL

MARK MANDELKER1

Abstract. Constructivizations are given for the classical theorem that an

interval is connected in the sense that it cannot be the union of two nonvoid

disjoint open subsets, and also for the theorem that an open set is the union

of disjoint open intervals.

I. Connectivity. To find numerical meaning in the classical theorem on the

connectivity of an interval, one must give an affirmative cast to the negati-

vistic concept of the impossibility of certain partitions. The classical result

states that it is impossible for open subsets of an interval to simultaneously

(1) cover the interval, (2) be disjoint, and (3) be nonvoid. Three constructiv-

izations result, each showing that under the assumption of two of the three

conditions, the third is precluded. In each case, an affirmative form of the

negation of the precluded condition will be proved.

For the first result, a fundamental lemma on located and totally bounded

sets is needed; it is also used in §2. The terminology and basic results of

Bishop's treatise [B] will be used. For example, a located set G is one from

which the distance of any point on the line may be measured; its metric

complement — G consists of all points at a positive distance from G.

Lemma. Let G be any located subset of the line. If the point a is in — G, and

a < b, then H = {x E [a,6]:[a,x] C - G] is totally bounded.

Proof. We may assume a = 0 and 6=1. Let e > 0 and choose m so that

\/m < p(0,C) and 3/m < e. For each z, 0 < i < m, choose a, = 0 or 1, so

that 0O = 1 and

p(/'/w,G) > \/m    when a, = 1,

pii/m,G) < 2/m    when a, = 0.

Let n be the largest integer such that a, = 1 for 0 < /' < n. To show that

A = {0,1/m, . . . , n/m) is an t approximation to H, we first show that

[0,n/m] C — G. Let 0 < x < n/m. Choose i < n so that Ix — i/m\ < l/m.

Then pix,G) > p(;'/w,C7) — \x — i/m\ > 0, and thus x is in — G. Hence A is

contained in H. Now let_y be any point of H and suppose^ > (/? + 3)/m.

Since y < 1, we have n < m; thus on+i = 0 and p((« + l)/w,CT) < 2/m.

Choose z in G with |(« + \)/m — z| < 2/m; thus z < (w + 3)/m < y and z

is in — G, a contradiction. Hence y < (« + 3)/m. Choose j < n + 3 such

that \y — j j' m\ < \/m. If j < n, then j / m is in A with \y — j / m\ < t. If

j > n, theny > n/m so \y — n/m\ < 3/m < e, with n/m in A. Thus A

is an c ap proximation to H. □
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We shall say that two sets are disjoint if their intersection is void.

Theorem \. If U and V are nonvoid, disjoint, located, open subsets of a

proper compact interval I, then these subsets do not cover the interval, in the

sense that a point of I may be constructed that has a positive distance from every

point of 77 and from every point of V.

Proof. Choose a G U and b G V; we may assume a < b. It follows from

the lemma that H = {x G I:[a,x] C - V) is totally bounded, and thus has a

supremum z; clearly a < z < b. Let y G 77 and choose t > 0 so that (y —

2e,y + 2e) n / C (/ and [z - e,z + e] C I. Suppose \z - y\ < t; then [z -

e,z + e] C - V, so that z + e G //, contradicting the definition of z. Hence

\z — y\> e. Now let y G V and choose <5 > 0 so that (y - 8,y + 8) n /

C K. Suppose \z — _y| < 8; then _y - 5 < z and there is x G // with >> — 8

<x<z<y + 8. Hence x G V, contradicting the choice of x in H; thus

\z- y\ > 8. □

Theorem 2. // zz compact interval is the union of two nonvoid open subsets,

then these subsets have a common point.

Proof. Let / = [a,d] be the union of nonvoid open subsets U and V, with

a in 77. Choose any point b in V. Put a, = a,bx = b, and let c, be the

midpoint of a, and b{. If c, is in 77, put z32 = c,,z32 = bx; while if c, is in V,

put a2 = aub2 = c,. Proceeding in this way, we construct a sequence of

nested intervals, as in Cantor's diagonal proof [B, p. 25]. Both sequences of

endpoints, {an} and {bn}, converge to the same point c. Since c is in /, it is

either in U or in V; we may assume it is in U. Since U is open, there exists

8 > 0 so that (c — 8,c + 8) n I Q U. Since bn -^ c, we maychoose k so that

bk E (c - 8,c + 8). It follows that bk lies in both U and V. (It is left for the

reader to give an example in which c is not a common point.) □

Under the hypothesis that an interval is the union of two subsets, there is

given a computational procedure for determining in which of these subsets

any given point of the interval lies. Thus the proof below predicts that if this

calculation is carried out for any one point, then the result will be the same

for all other points of the interval.

Theorem 3. If a compact interval is the union of two disjoint open subsets,

then one of these subsets is the entire interval (and the other void).

Proof. Let / = [a,b] be the union of disjoint open subsets U and V, with

a G U. Let x G /. If x G V, then U and V are nonvoid open subsets that

cover the interval, so by Theorem 2 they have a common point, which by

hypothesis is contradictory; hence jc G 77. This shows that U = I. rj

2. Open sets and unions of disjoint open intervals. For this constructiviza-

tion, we require that the given open set be colocated, i.e., it is the metric

complement of a located set. With this restriction, we obtain the result in the

classical form, for a bounded open set, without, however, a procedure for

indexing the intervals into a countable sequence. A family {/!,},<=/ of sets will

be called disjoint if whenever two of them have a common point, then they

are equal.
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Theorem 4. If U is any bounded colocated open set on the line, then U is the

union of a family {Ia}aSU of disjoint open intervals.

Proof. There are bounds b and c, and a located set G such that U = {x E

[b,c]; x E — G). Clearly b and c are in G. Let a be any point of U; then

b < a < c. By the lemma, Ja = [x E [6,a]: [x,a] C £/} is totally bounded,

and thus has an infimum a,. Clearly (a,,a] C U, a, < a, and a, E G. Simi-

larly, Ka = {x E [a,c]: [a,x] C J7) is totally bounded and has a supremum

a2 > a, with a2 E G and [a,zz2) C (7. Thus Za = iax,a2) is contained in [/ and

contains a. This shows that U is the union of the intervals {Ia}a<EU- Let

a,b E £/ and x E Ia n ZA; then a, < x < a2. Since a1,a2 E G, we have

Zx = Ia, and similarly Zx = Ib. Hence Ia = Ib; this shows that the intervals

{4}aGt/ are disjoint. □
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