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COIISTRUCTIYE IN,RATIOIIAL SPACE

Hark Handelkern

The Fr6chet conbination allons the congtruction of a conplete
uetrlc on the set of irrational numbers. Tbe constructive study of
the resulting space lH was begun by Enett Bishop. This paper
studies the structure of lll in some detail. The constructive
approach requires a strong form of the concept of irrational nunber
and particular attention to the distinctions between the various
notions of points exterior to a set. The main results are the
characterization and coastruction of all compact and locally
compact subspacea of fi.

1. Introduction. An irrational number is a real Duuber x€lR
guch that lx-Sl >0 for every rational number qeB. The classically
equivaleat definltj.on, ux is not in lD", is nucb veaker vhen

interpreted in a strictly constructive manner; it is insufficient
for the formation of the reciprocal l/lx-Sl wbich is required
here. Tfe choose a fixed indexing O={gtitf of the rationals'

Dcfinitioa. For any points x and y in fi, define
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td(x,y)=lx-yl + 
^Lk=1

^+
Thi.s yields a uetric on lM; tbe effect is to enlarge distances in

sequeDces of irrationals vbicb converge in lR to a rational nuuber,

so that in the uetric d they are no louger Cauchy sequenees. The

space (M, d) is discugsed classically in [10, p.1?3] '

The coastructive propertieg of real nunbers and uetric spaces are

found in [1] or [3]. General discussions of tbe constructive
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uethods introduced by Bishop nay be fouad 1n [?] and [9].
A.s for all constructive nathenatics, the resurts obtained here

are also classically va1id. certain restrictions required here,
hovever, are not Decessary elassically. The nost notable instance
of this is tbe notion of rocated set, to rhieh distances fron any
point in a space nay be constructively ueasuredj classically, every
set is located.

?- Basic propertieg of fi- The basic coeputational tools needed
for tbe study of M are contained in Lenmata 2.1 and ?.3 belor; the
proofs are erenentary. The usuar netric on R r11l be denoted p;
reference to tR will inply this netric. Reference to lM will inply
the netric d, exeept vhen tbe netric p is explieitly nentioned. For
any subset X of fi, the clogure of X in lR vitl be deooted by T.

LETIA 2-l- Ler 0<E < 1, Iet 1/2lf <E/3, and let 0<l< t. tt x and y
are pointo of Fl euch that lx-gll rl, for k6N and lx-yl <l2elgN,
then d(x, y) < e.

coRoll.llRr 2.2. The followiag are the saue with respect to either
netric, p or d: The open subsete of [vl. The pointwise continuous
real-valued functions on fi. The inequality relations on fi.
Sequentj.al convergenc€ in lH. In addition, for any Xcll'|, the
d-closure of X in M is I'nttt.

LETIA 2.3- tet x. yslM. If ly-qsl < lx -1yl/Z and ly-qtl <1, then

d{x, y) > I/zk.

when xclR, and x is located, -x denoteg Ebe aet.ris couplemeat
{yetR:0(y, X) >0} of X. lbe notation *X and tbe teru aetric
coapleuent vill also be used for arbitrary sets; -X vill consist
of all points y in lR such that there exists l>0 vith ly_xl >l for
all xeX.

l{etric equiuareace for two netrics oa a set will uean uniforu
continuity of both the identity uapping and its inverse, rather
thaa pointwi.se continuity, which is used classj.cally.

?UEOREI 2.i1. Let Xcfi. If Oc -X, tben p and d are equivalenr
on X.
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Proof. Slnce p<d it suffices to shov that for any 0<€<L there
exists 6>0 such that vhenever x, yeX and lx-yl <6, then

d(*, y) <t. Choose N eo that L/2N <E/3, construct 0<l<1 so that

lx-gll >l for all x eX and all k(N, and define 6=L2el3N.

Erarpler- To illustrate this result, consider sinple subsets of lM

of the forn S*: the set of terns of a eequence of irrationals which

p-converges to a point x in tR. For qeo, Lenua 2.3 shows that p and

d are not equivalent on Sn. On the other hand, when z elH, then

lDc -S", so Theoreu 2'4 shovs that p and d ara equivalent on S"'

These exanples vi11 also i.llustrate nany of the following results.
Note that {.fU, although constructiv*fy 5" is not nerely SzU{z}'

Although corollary 2.2 shorys that p and d are locally equivalent

on fi, the example Sn shows tbat they are not equivalent (in the

strong sense); we ril} try to determine the subspaceg of fi on rhich
they are equivalent.

TEEOREf, 2-5- Fix a poinr x in lll. Define the function {: tM-' lR0*

fron lH to tbe nonnegative reals bY

dx(y) = d(x. y)

Then { is p-unifornly-continuous on fi-

Proof. since the convergence of the series definlng d is uniforn,
the p-uniform-continulty of d* vil1 folIow fron that of each teru.

The kth term is p-unifornly-continuous on any interval bounded away

fron q1, and constant in some neighborhood of qi'

Rerart. 0n the other hand, the identity function fron (fi, p) to fi
is not unifornly continuous; that is, the netrics p and d are not

equivalent on lFl. This distinction is reflected in the inequality

ld{x, Y1) - d(x, Y2)l < d(Yr, Yz)

The netric compleroent -x of a subset of lR is distinquished fron
the negatiaa cowplement X* = {y e lR : y d X}. Between these is the

atrang compleaent X#={yelR: ly-xl>0 for all x €X}' Note that

lM=1p#. Hovever, Brou.werj.an counterexapples rnay be given to sho1

(y e lH)
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that the folloning classical stateuents are coastf,uctively invalid:
tH=0', O =fi#, Oull,l= lR.

I{e ril1 often need the following remma due to Biehop; for a proof
see [6, 5.4].

LErrA 2-6- rf x is a conplete rocated subset of a netric spa.ee y,
then X$= -X.

3- Subolnces of M. In thie gection we derive the baeic
connections betneen the netrice p and d. in regard to totally
bounded, compact, and 1oca1ly conpact subspaces of lH. rn choosing
the definition of a concept for conetructive development, one of
several claasically equivalent conditi.one is carefurly choaen for
ite conetructive usefulnese; i.t is usually not conetructively
equivalent to the other conditions. A netric epace i.s totalty
bouaded if it contains finite e-approximationo for every e > 0, it
is coapact if it is conplete and totally bounded. and it is
locarly conlmct if every bounded subset is contained in a conpact
subset. Although alnost all constructive definitions are chosen so
that the results read true classically, an exception is this
definition of 1oca11y conpact space. The classical definition doee
not serve ve11 in a constructive developnent; this ie di.scussed
further in [1] and [3].

?EEOREil 3- 1- Let Xctlvl. Then the following are equivalent.
(a) X is d-totally-bounded.
(b) I is p-totally-bounded and Oc -X.
(c) X is p-total1y-bounded and X'ctM.
(d) Xcfi and I'is d-conpact.

Proof- (a) inplies (b). Since p<d, ir is clear thar X is
p-tota11y-bounded. To shoty Qc -X, 1et qeGl, choooe k eo that
g = gt, construct a finlte t/Zk d-approximation A t,o X, and define
l= 1 a nin{ lx-ql : x eA}. Nov let y eX, and suppose ly-ql <L/2. W
Lemma 2.3, d(x, yl>I/2k for every x €A, contradicting the
sonstructj.on of A; hence ly -ql >1\/2.

{b) inplies (c). Since Oc -X = -X, ne have XctM.
(c) inplies (d). Since E is p-conplete and located, and

Qcfi#cr'#, it follovs that oc -r'. Ttrus the netrice are equivalent
on f-, and since F is p-conpact, it iE aloo d-conpact.
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{d) i.npli.es (a). The d-c}osure of X. is f, which rs d-totally-
bounded; thus X is also d-totally-bounded.

COROLLARI 3-?. lM is cornplete rn the netric d'

Proof. Let X be the set of terns of a d-Cauchy sequence in M.

It follovs fron the last theorex0 that rf X neets [I, then X 1s not

d-totally-bounded; this negati.vj.stic comment has the followinq
affirnative forro. The subset Sn is an exanple.

PROPOSfTfOI{ 3-3- Let XclH. If E neets O, then X is not

d-totally-bounded, in the strong sense that there exists t > 0 such

that for any finitely enuuerable subset A of X, there exists x € X

such that d{x, y) >t for all Y eA.

Proof- Construct qeEnO and cboose k so that 9=9k. Let A be any

finitely enumerable gubset of X, and construct x e X go that

l*-ql < ly-el /2 tox all yeA, and lx-Sl <1. Then for any yeA it
follove fron Lemma 2.3 that d(x, y) >Ilzk.

Let {xrr} be a seguence in ["], sonYergent vi-th respect to p to a

rational point. Becauee lM is conplete, the sequence cannot be

d-Cauchy (Corollary 2.2). This negativistic coument has the

folloving affirnative form, a slightly strenqthened version of a

stateoent in [1, p.110]; the proof is sini.lar to that of the last
proposition.

pnoP06ltlffi 3.1. A sequence {x,r} in [ll, convergent vith resPect to

p to a rational poiut, is not d-Cauchy, in the stroog sense that
there exists t>o sucb that for any n there exists m>n such tbat
d(xr, xrr) > t.

IEEOREil 3.5. Let xclu. Then x is coupa.ot vith resPect to d if and

only if it is compact with respect to p. In this situation, Qc -X
and the metrics p and d are equivalent on X.

Proof. Theorens 3.1 and 2.4.

TEEORHI 3.6- Let xcr'|. Then x is Iocal}y compa.ct vith reepect to
d if and only if it is locally conpact vith respect to p' In
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this si'tuation, oc -x and the netrics p and d are equivalent
on X. [1, p.109]

Proof- The bounded subsets of x are clearly the sane vith respect
to either metric. By the last theoren, the compaet subsets are the
sane. When X is locally cofipact ritb respect to p, then X ie a
closed located subset of tR; thus Oc -X, and the metri.cs are
equivalent on X.

4- Characterization of locally corpact and coryract
subapaces- A subspace of a loeally coupaet space i.s locally
coupact [conpact] if and only if it is closed and l0cated [and
boundedl. Although the space fi i-s not locally eompact, ve obtain
sinilar characterizations for subspa.ces of fi, together vith a
roethod for the construction of alI such subspa.ces.

TEEOREU 4-1- Any subspace T of M such that oc-T can be enlarged
to a subspa.ce x of lM whieh is locally conpact with respect to both
p and d. If, in addltion, T is bounded, then X ean be constructed
so as to be eonpa.ct vith respeet to both p and d.

Proof- we utilize the nethod of notches given in [5]. construet a

sequence {lg} so that LO \ 0, and lgl-x1 2ln for aII k and all
x e T. Def in" kL = L, construct a positive j-*ational ql ( 11, and

define I, =S(q1r,01 ), the open interval j.n lR about gr, of radius

01. Nov let n>L and suppose that for all i<n, integers ki have

been chosen, positive irrationals oi have been constructed, and

intervals Ii=S(gkr,Oi) have been defined, so that k, is the first

integer sith qk. . -Ui.irj, and olalu, ng(e1., Uj.rtj). since the

endpoints of the intervalg ri are imational, it folrows that for

each k either gt. Ui.r,rj. or qk. -Ur.r,ri. Thus k' and o' nay be

conetructed to continue the induction.

This defines a aequenc" {rn}} of disjoint open intervals with

lengths ! Gnl + 0, and yields a closed located subset X = fl* r Io"

of lR with -X= UX=f Irr. Thus X is p-1oca11y-conpact. It follovs
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fron the construction that TcXcM; thus X is d-1oca11y-conpact.
When T is bounded, there is a compact subset Y of X which

contains T. (Alternative1y, the construction of X nay be nodificd
so as to also notch out the intervals ( -o , a) and (b, +oo ), where

Tc [a, b], and a and b are j.rrational. The resulting set X is then
conpact. )

The construction of [5] yields all closed located subsets of lR.

By addiog the condition that all rational points are notehed out,
all locally compaet {and compact) subsets of lM are obtained.

TEEOREf, 1-2- A subspa.ce X of lM is loca11y compact if and only if
it is closed and located, and Dc -X'

Proof. The aecegsity follovs from Theoren 3.6. Conversely, enlarge
X to a locaIly conpact subspace Y; since X is closed and located in
Y, it is locaIly compact.

fEEOREf, 4.3. A subspace X of lH j.s conpact if and only j.f it is
closed, located, and bounded, and Dc -X.

Proof. The aecessity follors from Theoren 3.5. Conversely, the
preceding result shovs that X is locally coupact; since it is nov

bounded, it is conpact. (Alternatively, apply Theoren 4.1 directly')

Rerarl. If the condition ubounded" is vieved as "bounded auay from
infinity", then the condition 'Bc -X", tbat is, "bounded avay from
eacb rational point", i.s geen as a direct extensi.on. Under the

netric d, eacb rational point appears, in a sense, as an infinity'
The eoadition for a compact set is that it be bounded away froro aII
infinities; for a locally conpa.ct set, from alL but one.

5. Equivalent euba;nces- The folloving theoren, which eontinues
Theorem 2.4, gives one sufficient, and one necessary, condition for
the netrics p and d to be equivalent on a giveo subspa.ce X of llvl'

Exanples belov show that the one coadi-tj-on is rrof necessary, while
the other is not sufficient. Thus it remains an open problen to
give a sinple necessary and sufficient topoloqical condi-ti'on for
netri,c equivalence,

TEEOREU 5-1- Let Xcllvl. Then each of the following conditions
inplies the next.
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(a) 0c -X
(b) The metrics p and d are equivalent on X.
(c) I'cfi

Proof. Giveu (b), the set S of terns of a sequence in X, vhich is
p-convergent to a point x of E-, is not only p-total1y-bouaded, but
also d-totally-bounded. By Theorern 3.1, 5cH.

COROLLIIRI 5-2- Let XclM and let X be located in lR. Then the
conditj-ons of the preceding tbeorem are eguivalent.

Proof. If X is located, then E is locally coopact, and if also
fcffi, then it follovs frorn Theorem 3.6 that Oc -f = -X.

It follovs from Theoren 5.1 tbat if E roeets D, then p and d are
not equi.valent on X; this negativistic eomnent has the folloving
affirmative foru, which follows fron Lenna 2.3.

PROP(X;ITIOX 5-3. Let XclH. If f neets 0, rhen p and d are nor
equivalent on X, in the strong sense that there exists I > 0 such
that for any 6>0, there exist x, yeX such that lx-yl <6 but
d(x, y) > t.

Since classically al} subsets of lM are located, Brouwerian
counterexamples are required to ghov the nonconstructivity of the
converses to Theorem 5.1. A decision sequeace is a nondecreasing
sequence {arri of 0's and l-'s. There i-s no general constructive
procedure vhich deternines, for an arbitrary decision sequence,
vhether or not there exists a terr! equal to 1. The linited
Principle ot Cbniscience {LPOI, applied to any decision sequence,
either predicts that all the terms are 0, or j-ndicates the location
of a 1. This principle is nonconstructive, and therefore so is any
statement vhich iuplies it. The technigue of Brouverian
counte.rexamples is described nore fu11y in [1j, [2], section 2 of
[6], and [8].

EIAf,PLE 5-4- The statement "If X is a nonvoj.d subspace of fi on

which the metrics p and d are equivaleDt, then Ec -X" is
noncoDstructive; it inplies LPO.
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Proof. Given any decision sequence {an}, define

X = 1/t1 u l,/I,h: an ( arrall

If x,yeX vitb lx-yl <1,/4, theD x=y, so p and d are equivalent on

X. By hypothesis, X is bounded avay fron 0, so {arr} is eventually

constant.

EI.AilPLE 5-5- The statemeDt "If X is a nonvoid subspace of ll4 with
XcfM, then tbe netrics p and d are equivalent on X" is
nonconstructive; it implies LPO.

Proof- Given any decision sequence {an}, define

X = {61vlnh: an<an*1} ul,/r,/?lr.: arr<arr*1}

Let ixrrl be a sequence in X vhich is p-convergent to a point x in
lR. Eventually, lxi-xj1<1/4; thus either xn=/3 eventually, so

x € X, or an = 1 for aone n, in vhich event X is closed and again

x eX. Thue X is cloeed in lR, so X-cfi. Chooee k eo that q1 =0. By

hypothesis, construct 6>0 so that d(x, yl <L/2k vheuever l*-yl <6,
and choose N>Jr,/26. If an=0, then it followe from Lemma 2.3 that

all ao = 0.

6. Located subgcts. We norv conpare located subsets of fi and

{fi,p). Reca1l that a subspace of lR is totally bounded if and only
if it ie bounded and located in lR. For the first reeult re need the
folloving lemoa, a slight generalization of part of Proposition 13

in Cbap. a of [1].

r-ErrA 6.1. Let Y be a netric space and F a uonvoid subset of Y. If
every bounded subset of F is contained in a eubeet of F rhich ie
Iocated in Y, then F is located in Y.

TEEOREf, 6-2- Let XcFl. If f, is located in R, tben X ie aleo
located in fi.

Proof. Fj.rst consider the special case in rhich f, is bounded, and

let x ell1. Since the function y --t d{x, y) is p-unifornly-continuous
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on ll4, and X is p-totaLly-bounded, d(x, X)= inf {d(x, y) : y eX}
exists. Hence X i.s located in fi.

Now consi-der the general case, and let B be any bounded subset of
X. It follons from Theorem 1 of [ ] that there exist a, belR such
that X n [a, b] is located in lR and contains B. By the first part of
the proof , X n [a, b] is located in lM.

The converse i.s true in the special situation covered by the next
propositi.on, but vhether it 1s true in general is an open problen.

PROPOSIIIOX 6-3- Ler Xcfi vith Oc -X. Then X is loeated in tM if
and only if it is located in lR.

Proof . Let X be located in ll'1. Since f is contained in tM, it is the
closure of X in lM, and thus it is located i.n fi. It follons fron
Theorem 4.2 that I is d-1oca11y-conpa.ct, hence p-locally-conpa.ct,
and tbus located in lR.
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