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CONSTRUCTIVE IRRATIONAL SPACE

Mark Mandelkern

The Fréchet combination allows the construction of a complete
metric on the set of irrational numbers. The constructive study of
the resulting space M was bequn by Errett Bishop. This paper
studies the structure of M in some detail. The constructive
approach requires a strong form of the concept of irrational number
and particular attention to the distinctions between the various
notions of points exterior to a set. The main results are the
characterization and construction of all compact and locally
compact subspaces of M.

1. Introduction. An Irrational number is a real number x €R
such that |x—gq| >0 for every rational number g € @. The classically
equivalent definition, “x is not in @", is much weaker when
interpreted in a strictly constructive manner; it is insufficient
for the formation of the reciprocal 1/}x~—gq| which is required
here. We choose a fixed indexing D::{qk};;l of the rationals.

Definition. For any points x and y in M, define

T OO0

d(x,v) = |x-y| + :Z

k=1

1 1
| x~ qk !Y—qkl 2

This yields a metric on M; the effect is to enlarge distances in
sequences of irrationals which converge in R teo a rational number,
so that in the metric d they are no longer Cauchy sequences. The
space (M, d) is discussed classically in [10, p.173]}.

The constructive properties of real numbers and metric spaces are
found in [1] or [3]. General discussions of the constructive
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methods introduced by Bishop may be found in {7} and [9].

As for all constructive mathematics, the results cbtained here
are also classically valid. Certain restrictions required here,
however, are not necessary classically. The most notable instance
of this is the notion of Jocated set, to which distances from any
point in a space may be constructively measured; classically, every
set is located.

2. Basic properties of M. The basic computational tools needed
for the study of M are contained in Lemmata 2.1 and 2.3 below; the
proofs are elementary. The usual metric on R will be denoted P,
reference to R will imply this metric. Reference to M will imply
the metric d, except when the metric p is explicitly mentioned. For
any subset X of M, the closure of X in R will be denoted by X.

LEMMA 2.1 let 0<E<i, let 1/2N<E/3, and let 0<A<1l. If x and y
are points of M such that Jx—qy] >A for k¢N and jx—-v] <12€/3N,

then d{x, y) <€.

COROLLARY 2_.2. The following are the same with respect to either
metric, p or d: The open subsets of M. The pointwise continuous
real-valued functions on M. The inequality relations on M.
Sequential convergence in M. In addition, for any XCM, the
d-closure of X in M is INM.

LEMMA 2.3. Let x,yeM. If ly—agl € [x—qu{/2 and ly—qgl €1, then
d(x, y) > 172X,

When XCR, and X is located, —X denotes the metric complement
{vyeR:p(y, X) >0} of X. The notation —X and the term metric
complement will also be used for arbitrary sets; —X will consist
of all points y in R such that there exists A >0 with ly—x| 2A for
all xeX.

HNetric equivalence for two metrics on a set will mean uniform
continuity of both the identity mapping and its inverse, rather
than pointwise continuity, which is used classically.

THEOREM 2.4. Let XcM. If BC —X, then p and d are equivalent
on X.

398



MANDELKERN

Proof. Since p<d it suffices to show that for any 0 <€ <1 there
exists 8 >0 such that whenever x, y€X and |x—y| <8, then

d(x, y) <€. Choose N so that 1/2N < €/3, construct 0<A<1 so that
|x—qy| >A for all x€X and all k<N, and define §=2%/3N.

Examples. To illustrate this result, consider simple subsets of M
of the form Sx: the set of terms of a sequence of irrationals which

p-converges to a point x in R. For qe@, Lemma 2.3 shows that p and

d are not equivalent on Sq. On the other hand, when z €M, then
Qc -5,, so Theorem 2.4 shows that p and d are equivalent on §,.

These examples will also illustrate many of the following results.
Note that §;CM, although constructively §z— is not merely S,U{z}.

Although Corollary 2.2 shows that p and d are locally equivalent

on M, the example Sq shows that they are not equivalent (in the

strong sense); we will try to determine the subspaces of M on which
they are equivalent.

THEOREM 2.5. Fix a point x in M. Define the function d,:M-— RO+

from M to the nonnegative reals by
d,(y) =d(x, y) (yeM)

Then d, is p-uniformly-continuous on M.

Proof. Since the convergence of the series defining d is uniform,
the p-uniform-continuity of dy will follow from that of each term.

The kth term is p-uniformly-continuous on any interval bounded away
from qy, and constant in some neighborhood of gy .

Remark. On the other hand, the identity function from (M, p} to M
is not uniformly continuous; that is, the metrics p and d are not
equivalent on M. This distinction is reflected in the inequality

la(x, v1) - d{x. yp)| < d(vy. vp)

The metric complement —X of a subset of R is distinquished from
the negation complement X" ={yeR:y#&X}. Between these is the

Strong complement X# ={yeR:|y—x|>0 for all x €X}. Note that
!M:El#. However, Brouwerian counterexamples may be given to show
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that the following classical statements are constructively invalid:
M=0", o=M", QUM=R.

We will often need the following lemma due to Bishop; for a proof
see [6, 5.4].

LEMMA 2.6. If X is a complete located subset of a metric space Y,
then X% = —x.

3. Subspaces of M. In this section we derive the basic
connections between the metrics p and d, in regard to totally
bounded, compact, and locally compact subspaces of M. In choosing
the definition of a concept for constructive development, one of
several classically equivalent conditions is carefully chosen for
its constructive usefulness; it is usually not constructively
equivalent to the other conditions. A metric space is totally
bounded if it contains finite €-approximations for every €>0, it
is compact if it is complete and totally bounded, and it is
locally compact if every bounded subset is contained in a compact
subset. Although almost all constructive definitions are chosen so
that the results read true classically, an exception is this
definition of locally compact space. The classical definition does
not serve well in a constructive development; this is discussed
further in [1] and [3].

THEOREM 3.1. Let XcM. Then the following are equivalent.
(a) X is d-totally-bounded.
(b) X is p-totally-bounded and Gc —-X.
(¢} X is p-totally-bounded and XciM.
(d) XcM and ¥ is d-compact.

Proof. (a) implies (b). Since p<d, it is clear that X is
p-totally-bounded. To show @C —X, let qe®, choose k so that
q=gq;, construct a finite 1/2k d-approximation A to X, and define

A=1 A min{|x-q|:xe€A}. Now let y €X, and suppose |y-—gq| <A/2. By
Lemma 2.3, d(x,y):>1/2k for every x € A, contradicting the
construction of A; hence |y—q| >A/2.

{b) implies (c). Since RC —X= —X, we have XCM.

(c) implies (d). Since X is p-complete and located, and
acm*cT*, it follows that Qc —X. Thus the metrics are equivalent
on X, and since ¥ is p-compact, it is also d-compact.
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{d) implies {(a). The d-closure of X is X, which is d-totally-
bounded; thus X is also d-totally-bounded.

COROLLARY 3.2. M is complete in the metric d.
Proof. Let X be the set of terms of a d-Cauchy sequence in M.

It follows from the last theorem that if X meets @, then X is not
d-totally-bounded; this negativistic comment has the following
affirmative form. The subset Sq is an example.

PROPOSITION 3.3. Let XcM. If X meets @, then X is not
d-totally-bounded, in the strong sense that there exists € >0 such
that for any finitely enumerable subset A of X, there exists xe€X
such that d{x, y)>€ for all y €A.

Proof. Construct g € XNQ and choose k so that g=gq;. Let A be any
finitely enumerable subset of X, and construct x € X so that

jx-q| € |y—ql/2 for all yeA, and [x-qf <1. Then for any y € A it
follows from Lemma 2.3 that d(x, y)>1/2¥.

Let {x,} be a sequence in M, convergent with respect to p to a

rational point. Because M is complete, the sequence cannot be
d-Cauchy (Corollary 2.2). This negativistic comment has the
following affirmative form, a slightly strengthened version of a
statement in [1, p.110]; the proof is similar to that of the last
proposition.

PROPOSITION 3.4. A sequence {x,} in M, convergent with respect to

p to a rational point, is not d-Cauchy, in the strong sense that
there exists £ >0 such that for any n there exists m>n such that
d(xpy, x;) > €.

THEOREM 3.5. Let XCM. Then X is compact with respect to d if and
only if it is compact with respect to p. In this situation, Qc -X
and the metrice p and d are equivalent on X.

Proof. Theorems 3.1 and 2.4.

THEOREM 3.6. Let YcM. Then X is locally compact with respect to
d if and only if it is locally compact with respect to p. In
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this situation, RC —X and the metrics p and d are equivalent
on X. [1, p.109]

Proof. The bounded subsets of X are clearly the same with respect
to either metric. By the last theorem, the compact subsets are the
same. When X is locally compact with respect to p, then X is a
closed located subset of R; thus RC —X, and the metrics are
equivalent on X.

4. Characterization of locally compact and compact
subspaces. A subspace of a locally compact space is locally
compact [compact] if and only if it is closed and located {and
bounded]. Although the space M is not locally compact, we obtain
similar characterizations for subspaces of M, together with a
method for the construction of all such subspaces.

THEOREM 4.1. Any subspace T of M such that RC —T can be enlarged
to a subspace X of M which is locally compact with respect to both
P and d. If, in addition, T is bounded, then X can be constructed
50 as to be compact with respect to both p and d.

Proof. We utilize the method of notches given in [5]. Construct a
sequence {A,} so that lk ~ 0, and [qk——xlzlk for all k and all
x € T. Define klEl, construct a positive irrational algll, and

define I].Es(qkl’al)' the open interval in R about qkl of radius

Q. Now let n>1 and suppose that for all i<n, integers ki have
been chosen, positive irrationals ai have been constructed, and

intervals IisEs(qk"ai) have been defined, so that ki is the first
i

integer with q, € -, .I., and Qiglki Ap(qki, IJ. .I.). Since the

j<i j J<i j
endpoints of the intervals I, are irrational, it follows that for

i I - L.
each k either g ELJi<n ;O 9 € Lji<n ;- Thus k; and @) may be
constructed to continue the induction.
This defines a sequence {In}zil of disjoint open intervals with
o0 I*

lengths j(In) — 0, and yields a closed located subset XEmn-l "

of R with -—X::LJ;;lln. Thus X is p-locally-compact. It follows
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from the construction that TCXICM; thus X is d-locally-compact.

When T is bounded, there is a compact subset Y of X which
contains T. (Alternatively, the construction of X may be modified
S0 as to also notch out the intervals { —o , a) and (b, +c }, where
Tc [a, b], and a and b are irrational. The resulting set X is then
compact.)

The construction of [5] yields all closed located subsets of R.
By adding the condition that all rational points are notched out,
all locally compact {and compact) subsets of M are obtained.

THEOREM 4.2. A subspace X of M is locally compact if and only if
it is closed and located, and RC —X.

Proof. The necessity follows from Theorem 3.6. Conversely, enlarge
X to a locally compact subspace Y; since X is closed and located in
Y, it is locally compact.

THEOREM 4.3. A subspace X of M is compact if and only if it is
closed, located, and bounded, and R<C —X.

Proof. The necessity follows from Theorem 3.5. Conversely, the
preceding result shows that X is locally compact; since it is now
bounded, it is compact. {Alternatively, apply Theorem 4.1 directly.)

Remark. If the condition “bounded” is viewed as “bounded away from
infinity”, then the condition “@ < —X", that is, “bounded away from
each rational point”, is seen as a direct extension. Under the
metric d, each rational point appears, in a sense, as an infinity.
The condition for a compact set is that it be bounded away from all
infinities; for a locally compact set, from all but one.

5. Equivalent subspaces. The following theorem, which continues
Theorem 2.4, gives one sufficient, and one necessary, condition for
the metrics p and d to be equivalent on a given subspace X of M.
Examples below show that the one condition is not necessary, while
the other is not sufficient. Thus it remains an open problem to
give a simple necessary and sufficient topological condition for
metric equivalence.

THEOREM S5.1. Let XICM. Then each of the following conditions
implies the next.
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{a) Qc -X
{b) The metrics p and d are equivalent on X.
{c) TcM

Proof. Given (b), the set S of terms of a sequence in X, which is
p-convergent to a point x of X, is not only p-totally-bounded, but
also d-totally-bounded. By Theorem 3.1, ScM.

COROLLARY 5.2. Let XCM and let X be located in R. Then the
conditions of the preceding theorem are equivalent.

Proof. If X is located, then X is locally compact, and if also
XCM, then it follows from Theorem 3.6 that Qc -X= —X.

It follows from Theorem 5.1 that if ¥ meets D, then P and d are
not equivalent on X; this negativistic comment has the following
affirmative form, which follows from Lemma 2.3.

PROPOSITION 5.3. Let XcM. If X meets @, then p and d are not
equivalent on X, in the strong sense that there exists € >0 such
that for any 8 >0, there exist x, y € X such that |x—y| <8 but
d{x, y)>€.

Since classically all subsets of M are located, Brouwerian
counterexamples are required to show the nonconstructivity of the
converses to Theorem 5.1. A decision sequence is a nondecreasing
sequence {a } of 0's and 1's. There is no general constructive

procedure which determines, for an arbitrary decision sequence,
whether or not there exists a term equal to 1. The Zimited
Principle of Omniscience (LPO), applied to any decision sequence,
either predicts that all the terms are 0, or indicates the location
of a 1. This principle is nonconstructive, and therefore so is any
statement which implies it. The technique of Brouwerian
counterexamples is described more fully in [1], [2], section 2 of
[6], and [B].

EXAMPLE 5.4. The statement “If X is a nonvoid subspace of M on

which the metrics p and d are equivalent, then Rc —-X” is
nonconstructive; it implies LPO.
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Proof. Given any decision sequence {a,}, define
I = {V3}U{¥Z/n: ap<ap 1}

If x,yeX with {x—-vy}| <1/4, then x=y, so P and d are equivalent on
X. By hypothesis, X is bounded away from 0, so {a } is eventually

constant.

EXAMPLE 5.5. The statement “If X is a nonvoid subspace of M with
¥cM, then the metrics p and d are equivalent on X" is
nonconstructive; it implies LPO.

Proof. Given any decision sequence {a;}, define

X = {V3}U{v2/n:a, <a  }U{V2/2n:a <ay }

n+i

Let {x,} be a sequence in X which is p-convergent to a point x in

R. Eventually, [xi—le <1/4; thus either xnzv@ eventually, so

x€X, or ay =1 for some n, in which event X is closed and again
x €X. Thus X is closed in R, so XcM. Choose k so that q=0. By

hypothesis, construct 8§ >0 so that d(x, y) < 1/.2k whenever {x-y| <$,
and choose N>v2/28. If ay =0, then it follows from Lemma 2.3 that

all an=0.

6. Located subsets. We now compare located subsets of M and

(M, p). Recall that a subspace of R is totally bounded if and only

if it is bounded and located in R. For the first result we need the
following lemma, a slight generalization of part of Proposition 13
in Chap. 4 of {1}.

LEMMA 6.1. Let Y be a metric space and F a nonvoid subset of Y. If
every bounded subset of F is contained in a subset of F which is

located in Y, then F is located in Y.

THEOREM 6.2. Let XcM. If X is located in R, then X is also
located in M.

Proof. First consider the special case in which X is bounded, and
let x €M. Since the function y — d(x, y) is p-uniformly-continuous
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on M, and X is p-totally-bounded, d{x, X) = inf {d{x, y):7veX}
exists. Hence X is located in M.

Now consider the general case, and let B be any bounded subset of
X. It follows from Theorem 1 of [4] that there exist a, beR such
that XN [a, b] is located in R and contains B. By the first part of
the proof, XN{a, b] is located in M.

The converse is true in the special situation covered by the next
proposition, but whether it is true in general is an open problem.

PROPOSITION 6.3. Let XCM with < ~X. Then X is located in M if
and only if it is located in R.

Proof. Let X be located in M. Since ¥ is contained in M, it is the
closure of X in M, and thus it is located in M. It follows from
Theorem 4.2 that ¥ is d-locally-compact, hence p-locally-compact,
and thus located in R.
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