The common point problem in constructive projective geometry

Mark Mandelkern
New Mexico State University
Las Cruces, New Mexico, USA

e-mail: mandelkern@member.ams.org
web: www.zianet.com/mandelkern

Abstract
Using intuitionistic methods, an extension of an incidence plane was constructed by Heyting in 1959; however, a central question, the validity of the projective axiom that any two lines have a common point, was left open. A Brouwerian counterexample demonstrates that in the Heyting extension the common point axiom is constructively invalid.

MSC: primary 51A05; secondary 03F55, 03F65
Keywords: Projective extension; Brouwerian counterexample

Introduction
An extension of an incidence plane has been constructed by A. Heyting [H59], using intuitionistic methods [H66], although the validity of the projective axiom that any two lines have a common point was not established. Work by D. van Dalen [D63] developed the subject further, and improved the axiom system; still, the problem of the common point axiom remained open. The Brouwerian counterexample below shows that in the Heyting extension the common point axiom is constructively invalid.1

A projective extension of an incidence plane, in which the common point axiom is valid, will be constructed in [M12].

1 Preliminaries
An incidence plane \((\mathcal{P}, \mathcal{L})\) of points and lines is given, with the basic axioms of [H59] and [D63]. The Heyting extension \((\Pi, A)\) of this plane consists of \emph{p.points}

\footnote{For an exposition of the constructivist program, see Errett Bishop's "Constructivist Manifesto", Chapter 1 in [B67] or [BB85]; see also [M85], [R82], and [S70]. For a discussion of the philosophical issues motivating a constructive approach to mathematics, see [B73].}
of the form
\[\mathcal{P}(l, m) := \{ n \in \mathcal{L} : n \cap l = l \cap m \text{ or } n \cap m = l \cap m \} \]
where \(l, m \in \mathcal{L} \) with \(l \neq m \), and \(p\text{-}lines \) of the form
\[\lambda(\mathfrak{A}, \mathfrak{B}) := \{ \Omega \in \Pi : \Omega \cap \mathfrak{A} = \mathfrak{A} \cap \mathfrak{B} \text{ or } \Omega \cap \mathfrak{B} = \mathfrak{A} \cap \mathfrak{B} \} \]
where \(\mathfrak{A}, \mathfrak{B} \in \Pi \) with \(\mathfrak{A} \neq \mathfrak{B} \).

For the Heyting extension of the real plane \(\mathbb{R}^2 \), a simple notation will be used to construct certain \(p\text{-}points \). For example, \(\mathfrak{X} := \mathcal{P}(y = 0, y = 1) \) is the pencil of horizontal lines; similarly, \(\mathfrak{V} \) is the pencil of vertical lines. The \textit{line at infinity} is \(\iota := \lambda(\mathfrak{X}, \mathfrak{V}) \). When the lines \(l \) and \(m \) intersect, with common point \(Q \), the \(p\text{-}point \) \(\mathcal{P}(l, m) \) will be denoted \(Q^* \), the pencil of lines through \(Q \).

2 Counterexample to the common point axiom

To determine the specific nonconstructive elements in a classical theory, and thereby to indicate feasible directions for constructive work, \textit{Brouwerian counterexamples} are used, in conjunction with \textit{omniscience principles}. A Brouwerian counterexample is a proof that a given statement implies an omniscience principle. In turn, an omniscience principle would imply solutions or significant information for a large number of well-known unsolved problems.\(^2\) A statement is considered \textit{constructively invalid} if it implies an omniscience principle.\(^3\)

We will need the following omniscience principle:

Lesser Limited Principle of Omniscience (LLPO). For any real number \(\alpha \), either \(\alpha \leq 0 \) or \(\alpha \geq 0 \).\(^4\)

Brouwerian counterexample. In the Heyting extension, the statement \textit{“Any two \(p\text{-}lines \) have a common \(p\text{-}point \)”} is constructively invalid; the statement implies LLPO.

\begin{proof}
Let \(\alpha \) be any real number; set \(\alpha^+ := \max\{\alpha, 0\} \), and \(\alpha^- := \max\{-\alpha, 0\} \). In the Heyting extension of the real plane \(\mathbb{R}^2 \), define
\[
\mathfrak{A} := \mathcal{P}(y = 0, y = 1 - \alpha^+ x) \\
\mathfrak{B} := \mathcal{P}(x = 0, x = 1 - \alpha^- y)
\]
\end{proof}

\(^2\)This method was introduced in 1908 by L. E. J. Brouwer [Br08], to demonstrate that use of the \textit{law of excluded middle} inhibits mathematics from attaining its full significance.

\(^3\)For more information concerning Brouwerian counterexamples, and other omniscience principles, see [B67] or [BB85], [M83], and [M89].

\(^4\)The omniscience principle LLPO was formulated by Errett Bishop [B73].
$\mu := \lambda(\mathfrak{A}, \mathfrak{Y}) \quad \nu := \lambda(\mathfrak{B}, \mathfrak{X})$

By hypothesis, the p.lines μ and ν have a common p.point \mathcal{C}. Using the co-transitivity property for p.points, Theorem 7(iii) in [H59], we have either $\mathcal{C} \neq \mathfrak{X}$ or $\mathcal{C} \neq \mathfrak{Y}$. In the first case, suppose that $\alpha < 0$. Then $\alpha^+ = 0$, so $\mathfrak{A} = \mathfrak{X}$, and $\mu = \nu$. Also, $\mathfrak{B} = (0, 1/\alpha^-)^*$, so $\mathfrak{B} \notin \mu$. Thus the p.lines μ and ν are distinct, with unique common p.point \mathfrak{X}, a contradiction. Hence $\alpha \geq 0$. Similarly, when $\mathcal{C} \neq \mathfrak{Y}$, we find that $\alpha \leq 0$. Thus LLPO results.

Note. This counterexample concerns the full common point axiom, rather than the limited Axiom P3 as stated in [H59], where only distinct lines are considered. An investigation into the full axiom is necessary for a constructive study based upon numerical meaning, as proposed by Bishop. Questions of distinctness are at the core of constructive problems; any attempted projective extension of the real plane is certain to contain innumerable pairs of lines which may or may not be distinct.

3 Heyting axioms on the real plane

Since Axioms A1 through A7 were used in [H59] to establish cotransitivity, verification of these axioms for the real plane is required to support the Brouwerian counterexample above. Only Axiom A1 will require special consideration.

Heyting’s Axiom A1. If l and m are distinct lines, and P is a point outside l, then there exists a line n passing through P such that $n \cap l = m \cap l$.

Theorem. On the real plane \mathbb{R}^2, the Heyting axioms A1 through A7 are valid.

Proof. Since \mathbb{R} is a Heyting field, \mathbb{R}^2 satisfies axiom groups G and L of [M07]; this was shown in Section 9 of [M07]. Thus the axioms and results in Section 2 of [M07] apply here.

(a) **Axiom A1.** We may estimate the angle between the lines l and m. If this angle is positive, the lines will intersect (cf. Lemma 9.7 in [M07]), and we can easily draw the required line n. Thus we may assume that the angle is fairly small. Since $P \notin l$, it follows from Theorem 10.1 in [M07] that $\rho(P, l) > 0$; set $d := \min\{1, \rho(P, l)\}$. Either $\rho(P, m) > 0$ or $\rho(P, m) < d$.

Case 1. $\rho(P, m) > d$. Choose distinct points Q, Q' on m, each outside the line l. Since PQ intersects PQ', we may assume, using axiom L2, that PQ intersects l. Choose a coordinate system so that the line l has equation $y = 0$, the line PQ has equation $x = 0$, and the point Q has coordinates $(0, 1)$. Then the line m will have an equation of the form $y = ex + 1$, and the point P will have coordinates of the form $(0, h)$, with $h \neq 0$. Define the line n by the equation $y = hex + h$. It follows that $P \in n$, and it is clear that $n \cap l = m \cap l$.

Case 2. $\rho(P, m) < d$. Choose a point $Q \in m$ so that $\rho(P, Q) < d$; thus $Q \notin l$. Now choose a coordinate system so that the line l has equation $y = 0$, ...
the line $x = 0$ is the perpendicular to l dropped from Q, and the point Q has coordinates $(0,1)$; this preserves angles. Set $P' := (0,3)$, then $\rho(P', m) > 0$. Thus Case 1 applies to the configuration (l, m, P'), so we may construct a line m' through P' such that $m' \cap l = m \cap l$. Clearly, $m' \neq l$. Also, since the angle between the lines l and m is small, we have $\rho(P, m') > 0$, so $P \notin m'$. Now Case 1 applies to the configuration (l, m', P), and we may draw a line n through P such that $n \cap l = m' \cap l$. It follows that $n \cap l = m \cap l$.

(b) Axioms A2-A7. Using the results of Section 2 in [M07], these axioms are easily verified for \mathbb{R}^2. □

References

2011 September 2
rev. 2012 July 2