AN EXAMPLE IN CONNECTIVITY

MARK MANDELKERN

Bridges [2] has asked whether a located, connected set on the line contains, with
any two points a and b, the closed interval [a, b]. In this note a negative answer is
given by means of a Brouwerian counterexample [1, pp. 4-5, 25-26]. In this context,
a connected set S is one such that any open, closed, located subset of S is all of S.
Other definitions and required basic results are given in [1]. The counterexample
relates the question to the limited principle of omniscience (LPO) [1; p. 9], which
we use in the following form: If « is a real number with « > 0, then either o > 0
or « = 0. Since LPO is not true, and an affirmative answer to the question in [2]
implies LPO, we conclude that it also is not true. The counterexample depends on
the resolution of a bounded colocated set into a union of disjoint open intervals,
given in [3] and [4].

ExaMpLE. “If Sis alocated, connected set on the line, and a and b are points of S,
then S contains [a, b)” implies L PO.

Proof. Put S =(0,1)u{0,1}. Since S is dense in [0, 1], which is located, S
itself is located. Let F be an open, closed, located subset of S. Since S is totally
bounded, F is totally bounded, hence locatedin R. Put G = (— o0, 0] u F u [1, + «0);
then G is also located. Thus U = —G has a resolution into disjoint open intervals.
Let xe (0, 1) and suppose p(x, F) > 0; then also p(x, G) > 0,so xeU. Let I = (¢, d)
be the component of x in U. Since F is located, we may construct a point y in F.
We may assume y < d (the other case being y > c); it follows that y < ¢. Since F is
open in S there exists 6 > 0 such that Sn (y—3J,y+d) = F. (1) Ifc>ythenc>0
so ¢ is in S, hence, since F is closed in S and I is a component of U, we have
¢in F. Since F is open, ¢ has a neighbourhood contained in F, which must meet
U, a contradiction. (2) If ¢ < y+4, then there exists z such that ¢ < z < (y+9) Ad.
Then y <z < y+0 so zeF, and also zeU, a contradiction. 1t follows that
p(x, F) =0, so xeF. Thus (0,1) = F, and F = S. Hence S is connected. By
hypothesis, S contains [0, 1]. Now let « > 0. It suffices to consider the case a < I;
then e e S, so either o« > 0 or a = 0.

CoROLLARY. The set (0, 1) v {0, 1} is connected.
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