AN EXAMPLE IN CONNECTIVITY

MARK MANDELKERN

Bridges [2] has asked whether a located, connected set on the line contains, with any two points a and b, the closed interval [a, b]. In this note a negative answer is given by means of a Brouwerian counterexample [1, pp. 4-5, 25-26]. In this context, a connected set S is one such that any open, closed, located subset of S is all of S. Other definitions and required basic results are given in [1]. The counterexample relates the question to the limited principle of omniscience (LPO) [1; p. 9], which we use in the following form: If α is a real number with $\alpha \ge 0$, then either $\alpha > 0$ or $\alpha = 0$. Since LPO is not true, and an affirmative answer to the question in [2] implies LPO, we conclude that it also is not true. The counterexample depends on the resolution of a bounded colocated set into a union of disjoint open intervals, given in [3] and [4].

EXAMPLE. "If S is a located, connected set on the line, and a and b are points of S, then S contains [a, b]" implies LPO.

Proof. Put $S \equiv (0, 1) \cup \{0, 1\}$. Since S is dense in [0, 1], which is located, S itself is located. Let F be an open, closed, located subset of S. Since S is totally bounded, F is totally bounded, hence located in R. Put $G \equiv (-\infty, 0] \cup F \cup [1, +\infty)$; then G is also located. Thus U = -G has a resolution into disjoint open intervals. Let $x \in (0, 1)$ and suppose $\rho(x, F) > 0$; then also $\rho(x, G) > 0$, so $x \in U$. Let I = (c, d)be the component of x in U. Since F is located, we may construct a point y in F. We may assume y < d (the other case being y > c); it follows that $y \le c$. Since F is open in S there exists $\delta > 0$ such that $S \cap (y - \delta, y + \delta) \subset F$. (1) If c > y then c > 0so c is in S, hence, since F is closed in S and I is a component of U, we have c in F. Since F is open, c has a neighbourhood contained in F, which must meet U, a contradiction. (2) If $c < y + \delta$, then there exists z such that $c < z < (y + \delta) \wedge d$. Then $y < z < y + \delta$ so $z \in F$, and also $z \in U$, a contradiction. It follows that $\rho(x, F) = 0$, so $x \in F$. Thus $(0, 1) \subset F$, and F = S. Hence S is connected. By hypothesis, S contains [0, 1]. Now let $\alpha \ge 0$. It suffices to consider the case $\alpha < 1$; then $\alpha \in S$, so either $\alpha > 0$ or $\alpha = 0$.

COROLLARY. The set $(0, 1) \cup \{0, 1\}$ is connected.

References

1. E. Bishop, Foundations of constructive analysis (McGraw-Hill, New York, 1967).

2. D. S. Bridges, "On the connectivity of convex sets, Bull. London Math. Soc., 10 to appear.

3. M. Mandelkern, "Connectivity of an interval," *Proc. Amer. Math. Soc.*, 54 (1976), 170–192. 4. M. Mandelkern, "Components of an open set", to appear.

Mathematics Department,	Mathematics Department,
Birkbeck College,	New Mexico State University,
London W.C.1.,	Las Cruces,
England.	New Mexico 88003.

Received 9 March, 1978