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Abstract

This paper studies the metric structure of the space fl' of absolutely summable

sequences of real numbers with at most r nonzero terms. ff is complete, and is

located and nowhere dense in the space of all absolutely summable sequences.

Totally bounded and compact subspaces of -f1" are characterized, and large

classes of located, totally bounded, compact, and locally compact subspaces are

constructed. The methods used are constructive in the strict sense.
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1. Introduction

1.1. Many developments in mathematics may be described as continual refinements

by means of finer and finer distinctions. Thus, the irrational and transcendental,

the continuous and differentiable, and so forth. The constructivist tradition may

easily be viewed in this manner. Eschewing dependence on classical tenets, such as

the principle of excluded middle, we find that concepts often split into several quite

distinct fragments. Here we explore one aspect of the question - What is Finite? -
from a constructive viewpoint.

The usual notion of a finite set entails correspondence with an initial segment of
the positive integers. What then is an infinite series with only finitely many non-zero

terms? Are we given a finite set of r indices, the corresponding non-zero tetms, and a

guarantee that all other terms are zero? Or may some of the specified terms also be

zero? Or is there given merely an upper bound r for the number of nonzero terms? In
which case, deprived of classical omniscience, we cannot determine where the nonzero

terms might be situated! Or do we have a finite upper bound for the indices of the

non-zero terms?

We find that by adopting the appropriate definition we may construct a family

{I1'} of complete subspaces of the space l/ of all absolutely summable sequences.

We shall explore the metric structure of the spaces //", and of their totally bounded,

compact, and locally compact subspaces.
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How did the problem of finitary sequence spaces arise? A counterexample space
often used in topology is known as the "Hedgehog". This metric space .r is [he union
of countably many copies of the closed unit interval 1 : [0, 1], with all the points
0 identified. In the course of constructivizing this space, a problem arises; although
-/ is classically complete, the proof is not constructive. To obtain a constructively
complete space, a modified construction is required.

The original definition of the Hedgehog may be viewecl as follows: To construct a
point of ,./, choose a number a in the interval, and an index & to indicate which copy of
the intervalis intended. It is possible to define a Cauchy sequence of such points whose
(classical) limit cannot be found constructively. To describe the counterexample very
roughly, the points change index so rapidly, and approach zero so closely, that one
cannot see whether they tend to zero, or stop short of zero in one of the interval
copies, whose index cannot be observed. (The precise Brouwerian counterexample is
given below in Example2.2.)

To resolve this problem, we notice that the specification of the index & is necessary
only when the number a is positive. Thus a classically equivalent construction of the
space .I is the set of all sequences in 1 with at most one nonzero term. The previous
(multiple) point 0 becomes the constantly 0 sequence. The point a in the kth interval
becomes the sequence r: (c") with rk = e, and r,, - 0 for n I k. Classically,
no new points are introduced. Constructively, however) new points are proviclecl:
the limits of Cauchy sequences which previously had no constructive limits. Such a
point is a sequence in 1 with at most one nonzero term, but for which we can neither
specify a nonzero term, not prove there is none. Here is a simple example: Conduct a
sequential search for a counterexample to the Goldbach Conjecture. If the conjecture
is verified up to the (& - L)tn step, define ck to be the point of ,r with value 1/k
in the ftth interval. However, if the first counterexample is found at the jth step,
define rk : xi for all k > j. Then {c}} is a Cauchy sequence which has no limit
in the original space .I. (Brouwerian counterexamples of this sort are discussecl more
precisely in [l], [2], and [10].) Now define the sequence r: (r,) by xn: lf n if the
first counterexample is found at the n'h step, and rr, = 0 otherwise. Then r is a point
of the space .I defined by sequences, and rk --- r.

The classical Hedgehog.r is described as the set of pairs (a,&), where a € l and
lc e z+, with all pairs of the form (0,ft) ictentified, and with metric pr clefinecl by

With the sequence definition of "I this may be written simply as

oo

p(x,a)=Dlrn-anl.

Ncw, Itowe""r, ,;." we clo not require knowleclge of the location of the possibly
nonzero term (as was necessary to obtain a complete space), we have introcluced a
problem in constructively defining the metric. We must require summability of the

( l"-gl if k=j,e(@,k),(0,r)) = i ': , :t i: : -, .'\ r" 1a+0 if k*t.
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sequence which determines a point of "I. As absurdly trivial as it may seem to sum

u ,"qrr.r,." which is all zeros except for at most one term, the constructive necessity

of this condition becomes clear when one substitutes 1 for lf n in the example just

given above. If it were possible to estimate the sum of the resulting sequence, then

Goldbach's Problem would be solved'

we generalize the Hedgehog by considering, for any positive integer r, the space

H' of alsolutely summable sequences of real numbers with at most r nonzero terms'

The original Hedgehog J 14, Ex. a.1.5] is realized as a locatecl subspace of 111 in

Lemma 3.3 below.

1.2. Summary of results. The results obtained here are constructive in the

sense of EnRBrr BisHop's Foundations of Constructive Analysis [1]. One exposition

of the constructivist thesis may be found in [8]'

This paper studies the metric structure of H'. The space l{" is complete, and is lo-

cated and nowhere dense in the space ,FI of all absolutely summablesequences. Totally

bouncled and compact subspaces of FI" are characterized. The essential characteristic

of a totally bounded subspace of H' is a common sequence of summability parameters

for the..qn.n.", in the robrpr.". Large classes of located, totally bounded, and com-

pact subspaces are constructed. Although the spaces H' are classically a-compact'

none is constructively o-compact. The space If is not locally compact, but does

contain a dense, lo.uily compact subspace -L", consisting of sequences with exactly r
nonzero terms.

A number of Brouwerian counterexamples have been included where appropriate,

in orcler to determine as closely as possible the constructive limits of the theory' This

method is described in [1], [2j, and [10]. Most of the examples are given in a form

which shows a certain statement nonconstructive because it is equivalent to one of a

number of nonconstructive omniscience principles. Since these omniscience principles

are classically valid, these counterexamples are at the same time classical proofs of

the propositions involved.

projected studies will consider the characterization and construction ofreal-valued

continuous functions on H', and of continuous mappings between the various spaces

/1', and between /1" and the Euclidean spaces'

1.g. preliminaries. For real numbers a we distinguish between the concepts

,,cv is not zero', and "a is nonzero". The first means that it is contradictory that a

be zero. The seconcl, which is much stronger, and more often used, is written d+0,
ancl means lol > 0. The condition B ) 0 means that for some positive integer &, an

explicit rational approximation q has been found, to within 1'lk of B, with q> Ilk'

In lieu of the trichotomy of real numbers, which is not constructively valid, we will

make frequent use of the Constructive Dichotomy Lemma: If o ( B, then for any r,

either r < g or r ) a. See ll,p' 24),[2, P' 26] or [10, p' 16]'

A finitety enumerable set of at moslr elements, where r>1, is a set of the form

A:- ior,a2,...,arj.If, in addition' a; is not oi whenevet i + i, then A is called a

finite'sit of r el"nre'nls. The void set is not considered finite. Other basic constructive

notions may be found in [1] or [2]'
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2. Basic Structure of H'

2.I. Definitions. Let H denote the set of all absolutely summable sequences
of real numbers. Then H is a metric space, with distance g defined by

oo

p(r,a)=!l*,-a,l

for any points , =7),r*, ancl y = (y*)f=t The (linear) space rl is usually referrecl
to as /1, although the subspaces of Il consiclered here will not be linear. The usual
proof that F1 is complete, a simple exercise, is constructively valid.

We are interested in points of FI with at most finitely many nonzero terms, and
must make this notion precise. For any integer r ) l, it would seem natural to
consider the subspace G' consisting of all points r = (r,) in F/ such that there
exists afiniteset Pof rpositiveintegers with c," = 0for alln( P. However, this
space G' is not constructively complete (see Example 2.2 below). A weakening of the
condition does yield a constructively larger space which is complete. Let H' denote
the subspac.e consisting of all points n : (rn) in FI such that whenever P is a finite
set of r positive integers with r' l0 for all n € P, then rn = 0 for all n. ( p.
Equivalently, a point n : (rn) of .FI lies in H' if and only if, whenever p is a finite
set of positive integers with r," I 0 for all n € P, then card P ( r. Any sequence of
real numbers satisfying this condition will be called finitary of order r.

We will show that fI" is complete, and that G" is a dense subspace. Thus the two
similar, classically equivalent, conditions used to define these spaces are constructively
distinct. For a point of fI' the number of nonzero terms is limited by r, while for
a point of G' the r indices of the possibly nonzero terms must be specified. Finally,
let F" denote the subspace consisting of all points r = (xn) of G, such that r, is
rational for all n. It will also be convenient to denote by f10 the subspace {0}, where
0 denotes the constantly zero sequence.

We first show that the spaces G' are not constructively complete, demonstrat-
ing the need to consider fI'. For a discussion of the nonconstructive omniscience
principles such as The Limited Principle of Omniscience (LPO), see [10] or [7, Sec. 2].

2.2. Example. For any r) r, the slalement "G' is cornplele" is nonconstruc-
tiue; it is equiualent toLPO.

Proof . First assume that G'is complete. To derive LPO, let {a7r} be a decision
sequence (a nondecreasing sequence of zeros and ones); we must show either that all
ak = 0 or that some.rft = 1. We may assume that or = 0. Define a sequence {ro}T=,
in G" as follows. If ap - 0, let ck be the point of G" with ,h:1, for all " <,, *iif,
nf = rl.k, and with ,k: 0 otherwise. lf a1, - 1, define tk _ 'rk-t.It 

is easy to verify
that {ce} is a Cauchy sequence in G'. By hypothesis, c} --* y for some point y of G;,
sothereisaset Pof r positiveintegerssuchthat An=}forall nf p.Itfollowsthat
P is of the form P = {1,2,...,r - l,q}, with q } r. Either yc < llqor yo > 0. In
the first case, consider any ft and suppose that a6 - 1. Then there is an integer j > r
such that aj < aj+r, and r& - ri forall & > j. Thus U = ri, and yi - rt, a tli. tt
follows that j = Q, d contradiction; thus all a7, = 0. In the second .ur", *h"r" Aq ) 0,
there exists ft > q such that x! ) 0, and thus as - l.
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conversely, let {rft} be a cauchy sequence in G'. Since.F/ is complete, rk ---+ t
for some r e H. Usi.tg LPO, we may determine whether tn : 0 or r, I 0 for

each 2; define P = {n : rn *0}. Since rf, - xn for each n, it follows that P is finite,

with card P '-r; thus r e G' . tr

We now show that, for finitary sequences, convergence to zero ensures summability.

2,3. Lemma. Lel x: (rr) be a finitary sequence of real numbers' of order r'
Then the following are equiualent:

(i) r' --- g.

(ii) D rn is absolulelg conuergent (and thus r € H')'

Proof. Let6 > 0andchooseNsothat lr"l < ef2rfor alln 2 N. Let

M > N and partition {N,N+ 1, ...,M} -TU P so that l""l< el2M for all n€T
and lr",l > 0 for all n € P. It follows that card P ! r, and thus D'ul=*lr7"l -
D^r,lr'l + Dneplr,l < M(el2M) * r(el2r) - 6' tr

2.4. Examples. (1) Let {a,} be a sequence of zeros and ones, with at most a

single one, for which we do nof know whether some a'" - 1. while {a"} is finitary, we

do not know that an + 0, nor that !o,1 converges. on the other hand, anf n ---0,

and thus Do"l, converges.

(2) Let {ar} be a sequence of zeros and ones, such that "all an = 0" is contra-

dictory, but, constructively, we do nof know when ar, - 1. Define tn:1/n, unless

d* = I for some k 3 n, in which case define rn = 0. Then cr, --' Q' Classically,

we do know when an - I, so {r'} is classically finitary, and lfn converges clas-

sically. However, {rr} is not constructively finitary, and ! xn ts not constructively

convergent.

(3) Let {or} be a sequence of zeros and ones, with at most a single one, for which

we do not know whether some on - 1, and let T = {on : n € Z+} be the set of

its terms. Then T has at least one, and at most two, elements, but ? is not finitely

enumerable according to constructive usage'

(4) There is no constructive procedure for deciding, given a real number a, whether

" _ 0 or af0. Let r > 1 and let c : (rr) be apoint of H' with 11 = 1. Then the

set .4 : {n €Z+ : rn I 0} is nonvoid, but,4 need not be finite. Even when r is a

point of i", ,o that A is a nonvoid subset of a finite set of r positive integers, ,4 need

not be finite.

(b) A subset B of a set A is said to be iletachabte if for each point a in -4, either

a e' b or a ( B. The statement "Every nonvoid detachable subset of the positive

integers is either finite or infinite" is nonconstructive; it is equivalent to LPO. This

is pioved, not quite explicitly, in [9]. The set -4 of Example (a) is not, in general,

cleiachable. When the terms of r are rational, then ,4 is nonvoid and detachable, and

not infinite, but still ,4 is not, in general' finite'

2.5. Theor em. Each space H' is complete'

proof . Let {rk}f,, be a sequence of points in }/' with ck ---+ y, where y =(y")
isapointof H. LLt P"i;"finitesetofpositiveintegerssuchthat a"*0forallne P'
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clefine 6 = min{lynl:n € P}, and choose apositive integer N so that Q(tN,il <6.
Then cf; I 0 for all n € P, and it follows that card P 1 r. Thus If is closed in fI.

2.6. Lemm a. For an1 r, the subspace F' is dense in H'
Proof . Let r = (r^)be a point of H',and let e ) 0. Choose a positive integer

N so that D",>,ns lt'l < e/3. Partition {1 ,2,.. .,1/} : P UT so that lt"l > 0 for all
rt € P and lr,,l < elSN for all n e T. For all n e P, choose a rational number y,,

so that lr,. - anl < ef 3r, and define un -:0 otherwise. since card P I r, the point

a = (an) lies in F". Clearly q(r,a) < €. tr

There is a third condition, distinct from the two so far used, which may be imposed

on points of H:
2.7. Example. Let r )_ | and let D' be the subspace consisting of all points

r :- (rn) in H' such that there erisls a positiue integer p such that rn = 0 for all
n ) p. Then G' C D' C H', but the statent'ents "D' = H"' and "G' = D"' are

nonconstructiue; the firsl is equiualenl lo LPO and the second lo LLPO.

Proof . The case r - I will suffice to indicate the proof for any r. Assume that
D\ : -f/l and let {ar} be a decision sequence. Define rn: lf n if an z-rl211, and

tn: 0 otherwise. Then c = (n^) is a point of Hr, so by hypothesis there is a positive

integerpsuch that r,, -0 for all n ) p. If a, - 0, then Qn=0 for alln; thus LPO

follows. The converse follows from Example2.2 and Lemma2.6.

Now assume that Gl - Dl. We will establish LLPO (The Lesser Limited Principle
of Omniscience) in the following form: For any real nurnber a, either o > 0, or a 10.
Define xt: (trY 0, 12 = (-o) V 0, and rn -- 0 for all n ) 3. This defines a point r
of D|; by hypothesis there is a positive integer p such that r,, - 0 for all n I p. If
p= | then a 2 0, while \f p* l then a ( 0; thus LLPO follows. conversely, given

x € Dl we may use LLPO to choose a positive integer q such that lrol2lr.l for all
rz. Then xn = 0 for all n * q, and it follows that c e G1. !

3. Located and totally bounded subspaces

A metric space (X , q) is totally bounded if it contains a finite e approximation for any

e ) 0; equivalently, if it contains finitely enumerable approximations. A metric space

is contpacl if it is totally bounded and complete. A subset Y of a metric spac.e X is

located if the distance g(r, Y) to the subset may be measured from any point c in X.
Compact subspaces are always located. The melric complement X -Y of a located

subset Y is the set of points in X situated at a positive distance from Y. These and

other construc.tive properties of metric spaces are developed in [1] or [2]. We will also

need the following elementary properties of located sets [5]: The closure of a located ,

subset of a metric space is also located. A dense subset of a located subset is also

located. If Y is a subset of a metric space X, and p(r,Y) exists for all points r
in some dense subset of X, then Y is located in X. A method for constructing all
located sets on the real line is given in [6].

While classically every subset of a metric space is located, in a constructive study
it is a central concern to identify sufficiently many located sets. An example is the

construction of compact subspaces of H' in Theorem 4.1 below, using Lemma 3.3,

which constructs a large class of located sets. We require first a routine calculation.

42r
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3.1. Definition. Let A be a finitely enumerable set of at most N real numbers,

ancl let 6 > 0. Ln e approrimate ordering of Ais an enumeration,4 : {at ,a2,..., oN}
in which a; I ai*e whenever 1 ( i < j < N.

3.2. P roposition. Euery finitely enumerable set of real numbers has € approb

irnate orderings for all c > 0.

Proof. If ,A/ = 2 and A = {b,c}, either b < cor b > c- €; define or = b or

at = c accordingly. If N ) 2, write A - B U{6}, andby induction construct an

ef2 approximate ordering B - {a1,a2,...,oN-l}. For each i with | < i 
-{ 

N - 1,

determine either b > ar - el2or b < ar* el2,and define oi = 0 or oi - I accordingly'
If alla;:0,define aN=b;if alla;=1,define ao-b'If o;{ a;11 forsomei,then

{or,or,. . .,a,i,,b,a;+t, . . ., alr-r} is an e approximate ordering of ,4. D

3.3. M ain Lemm a. Let {X"} be a sequence of located subsets of|lN-, with0 € Xn

for each n. Then the subspace X : {n € H' : xn € Xn for all n} of H' is located

in H.
Proof . Let y € Il, and for each k ) r, partition {1,...,k} = LpU Sp so that

card.L6 = r and ly"l- a(yn,Xn) > ly^l- q@^,X^) - llk whenever n € L* and

m € Sr. Define

d*= D p(an,Xn)+ | lv"l;
n€Lx ndLx

thus d7, = Di"=r g(yn,Xn)lDn.*Lully"l- a(a",x")).Let e ) 0 and choose ly' so

that l/N ( e, and so that 6n =lanl- p@",Xn) <e for all n > N' If j > k> N,
then li is obtained from tr; by replacing at most r indices rl, corresponding to each

of which the change in 6,, is less than e; thus ld* - dil < ,r. Hence {d1} is a Cauchy

sequence; define d :- lim1, dp.

Now let r € X,and let e > 0. It is not difficult to construct a point w rn X OG'
with p(r, w) < e (cf. Lemma2.6). Choose a set Q of r positive integers such that
un = }for all " ( Q. Choose a positive integer k so that k 2 rfor all n € Q,so that

llk <e, and so that il > d-e. Then

p(v, w) 
= 3: ";,__,;," + D^ Eq ty,t

:',;::t :l:?Il,',7^', - 
^, 

^, 
x ̂

)l

= dp-rlk>d-(r+1)e. ,

Thusdu-q(a,r)+(r+2)e.
Finally, for any k, choose zn € Xn so lyr, - znl 1g(yn,Xn)+|lk for all n € Lr

and define Zn: 0 otherwise. Then z € X and

p(v, z)= 
: lan - 'nl 

< t
This shows that g(y,X) - d.

s(an, Xn) * rlk+ D ly,l - d* * rlk.
n4L*

D
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Remark. Taking r = | ancl X,, : [0, 1] for all tr, the original Fledgehog "/ is

realizecl as the locatecl subspace X ) Gl '

3.4. Theor em. Each space H' is located in H ' n

3.5. Examp le. For any r 2 l, the. stalernent "For any point y of H, there erists

a poinl z of H, such thal g(y,H') = p(y,z)" is nonconstructiue; il is equiualent lo

LLPO.
proof . It will suffice to give the proof for r - 1. Let o € R, and define

y = (l+ o, 1- o,0,.. j tt hyiothesis, .hoor" z € Hl such that p(A,Hr) - p(A,z)'

It will now be convenient to clerive certain consequences of implications involving the

conclitions a ) 0 ancl a < 0, although of course we have no method for obtaining such

determinations. If a ) 0, then it ls clear that z - (1 + o,0,...); so z1 > 1' Thus

zt 1l implies o S 0' Similarly, if a ( 0, then " = (0,1- a,0' "')' and z1= 0' Thus

z1 )0 impliesa 2 0. sincewe can determineeither that zt ( l or that z1 > 0, it

follows that either o ! 0 or o 2 0'

conversely, assume LLPO and let y e H .construct a decision sequence {41} such

thaip(y, i'i'.1/& when ak=0 and 4(y,Ht) > 0 when op -l' Define asequence

lriyinnt *follo*r. When ok=g,.frolt"apoint zk tnHl sothat q(A,tk)<llk'

When 6k = l, we will first define zft in the case where k is the least such integer,

u.ra tr,"n a 
"nn" 

,,i : zk for all j > k. choose a positive integer rn such that 
-ly^l 

> 0'

and choose N so that la^l< ly-lrut all n ) N. Using LLPO, choose p < N so that

lyol2ly,lfor dl;;,;l'h"n"""r- to be the point of I/t YIh '1,=,v.0 -L"' 
r €G|

and choose q so that tn=}for all n* q. Then p(y, r)2D**sly"l2D,*pla^l-
p(y,rk). It follows (in this case) that a(a,zk) = Q(U,41)' this defines the sequence

J.k\t- )'
Now let k < j.lf oi -0, then Q('k,'i) <2lk'If o1' - 1' then zk = zi ' Finally'

if o1, - 0 and o1 - i, then q(v,;i) < iltt "na 
p(a,-zi) - o@,nl) : 1/&; thus

p(zk,zi\<21k. g"n."'{;il i..b.".f,ysequence,-ui'drt'---'zfor apoint zof H1'

;i;;;'S-aa;,rn) - p@)ui) < rlk for all &, it follows that p(y,Hr) - p(a,')' tr

3.6. Remark. using the same method, and the representation of located sets

on the line by notches [6]lone may also show that the statement "For any complete

located set X C R, arrd'any point y in IR, there exists a point z rn X such that

O@,X) = Q(A,z)" is equivalent to LLPO'

we wish to construct compact subspaces of I/", and will first characterize the

totally bounded rr,brpu.", of H'and H. In any metric space) a totally bounded sub-

space is boundecl and located. For subspaces of the Euclidean spaces' these conditions

ar" also sufficient, although they are usually not sufficient in other spaces'

3.7. Definition. A family X of sequences of real numbers is said tobe equi-

summable if for any e ) 0 there Lxists a positive integer N such that ![t l'"1 < '
for any sequence r = (r") in X'

The proof of the following lemma is virtually the same as that of Lemma 2'3'

(A counterexample to the corresponding statement in 11 is given by the family of

."qrl"n.", of the form (If nn), for p > 1')

3.8. Lemma. AsubspaceX of H, isequisummableif andonlyif forany 6>0
there erists a posiliue integer N suchthatlrrlr-e for allpoints r:-(rn) in X' and

allnlN. 
- n
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3.g. Theorem. A subspace X of H' is totally hounded if and only if it is

bounded, located, and equisunt'nt'able.

Proof . First let X be totally bounded, and let 6 > U. lI A ls a nntl"e €lz
approximation to X, ancl DL" lo,l < ef2 for each a € -4, then DLt lr,,l < e for

TfA IS finite e 12be totally bounded, and let

all r € X.

Conversely,let X satisfy the three conditions, and let e ) 0; we may assume that

e < 1. First choose a positive integer N so that Dl'=r lt"l < e for all r € X, and

choose a real number ) so that p(c,0) < )- 1 for all t € X. Now choose afinite e/N
approximation B to the interval (-), )), with 0 € B. Define

Y={yeH':Un€B whenn(ly', and Un=0 whenn>N}'

Then Y is afinite subset of H'. Since X is located, we may partition Y - WUT
so that p(y,X)( 5e for all y € W and g(A,X) > 4e for all g € ?. For each y € W
choose A'e X such that p(y,A') ( 5s and define Yt to be the set of all points y/ so

obtained. Then Y/ is a finitely enumerable subset of X.

Now let r e X. Choose z €G'so that p(t,r) ( e, and choose afinite set P of r
positive integers such that zn = 0 for all n ( P . It follows that f flry lr^l < 2e and

1r,l< ) for all n. Foreach n inQ={n€ P: n <_N}, choose anumber an € B so

thatlzn -a^l< ef N, and.define un =}for all n eQ.Then the point y = (a") lies in
y and s(a,-*) S p@,a) < s(r, z)+ s(2,il < e*D,,<rv lrn - anl+D,>ry l.,n - v"l <
€+ NGIN)+Zi - 4e.ltfollows that y e W and p(r,y') ( 9e. HenceY' is a finitely

enumerable 9e approximation to X. This shows that X is totally bounded' D

3.L0. corollary. A subspace of H' is compact if and only if it is closed,

bound.ed, localed, and equisummable. tr

Minor changes in the proof of Theorem 3.9 will yield a proof of the following

8.L1. Theorem. A subspace X of H is totally bounded if and only if it is

boundeil, located, and equisummable. tr

The following proposition shows that, in applying Theorem 3.9 and Corollary 3.10,

the boundedness condition may be verified termwise'

3.I2. Proposition. A nonuoid subspace X of H' is bounded if and only if
there is a real number ), such that lrnl < \ for all points r:- (rn) in x, and all n.

Proof . Let the given condition hold, let r € X, and let e > 0. For any N,

partition {I,2,...,N} -WUTso that lr,l > 0,forall ne w and lr,,l<elN for all

n € T. It follows that card W I r, and thus Dil=r lrnl - Dnew l'" I + Dner l'"1 <
r\+ N(elN) - t)*e. Thus p(r,0) ( r) for all r € X' n

4. Compact subsPaces

We now consider methods for constructing a compact subspace X of H'. We begin

with a sequence {X^} of compact subsets of the real line, and use the set Xn to restrict

the nth term c,, of a point r = (',n) of X. This may be done in two ways, requiring

either that r, € Xn for all n, or only that c,, € Xn whenever nn * 0. A third

condition, ..for each rz, either frn =0 or n, € X,,'', will not produce a constructively

complete subspace.

0.
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The first, and simplest, method relies on the previous results on located and totally
bounded subspaces. (A counterexample, showing that the corresponding construction
in H will not produce a compact subspace, may be obtained using sequences of the
form (lfnn), for p > 1.)

4,L. Theorem. Lel \X"\ be a sequence of totally bounded subsets of R, with
0 e Xn for each n, and sup lX,,l* 0. Then the subspace

X : {r € H' : rn € Xn for all n}
of H' is totally bounded. If, in addition, each sel Xn is com,pacl, then X is compacl.

Proof . It followsfrom Lemma3.3 that X is located in 11', from Lemma3.8 that
it is equisummable, and from Proposition 3.12 that it is bounded. Thus, by Theorem
3.9, X is totally bounded. When each set Xn is compact, then X is closed in H,,
and thus X is compact. D

We wish to relax the requirement that 0 € Xn for all n. One method is the
following; this result will be needed to construct the locally compact subspaces tr' in
Theorem 5.6.

4.2. 'I heorem. Let {X"} be a sequence of totally bounded subsets of R, such
lftal srrp lX"l - 0. Then the subspace

X : {r € H' : rn € Xn wheneuer r" + 0}

of H' is totally bounded. If, in addition, each set Xn is conrpact, then also X is
cornpact.

Proof . Itfollowsfrom Lemma3.8 that X is equisummable. Let e > 0 and choose
N so that DLr+r lr"l< ef}for all r € X. For each n (.|y', choose afinite e/3r
approximation Y" to Xn. Let Y be the set of all points a = (y") tn H' such that

(i) when rr ( .|y', then either Un = 0 or Un € Y,,, and

(ii) when rr > Iy', then y,., - 0.

Then Y is afinitely enumerable subset ofX. Let r e X and partition {1, 2,...,//} =
TUW so that lr"l < elSN for all n, e T, and lc,l > 0 for alln e W. It follows
that cardW { r. For each n €W, choose Un €Yn so that lyn-rnl < el3r,
and define Un = 0 otherwise. Then the point y = (y") lies in Y, and g(r,y) :
Dnew lyn - rnl * D,ez lr"l + D,,>.rv lr"l < r(el3r) + N(elJN) + elJ - e. This
shows that X is totally bounded.

Now let each set Xn be compact, and let {re} be a sequence in X with rk - r,
where r: (rn) is a point of H'. [f for some ?] we have rn # 0, then for sufficiently
large k we have *N+0, and thus rf; e X,; thus rn € Xn. Hence r € X; this shows
that X is closed tn H'. !

A slightly stronger condition produces a constructively smaller subspace which is
rlof compact, as shown in the next example. (On the other hand, it was necessary to
use a form of this stronger condition to obtain the finitely enumerable set Y in the
last proof.)

4.3. Example. The. stalentent "lf lXnj is a sequence of conrpact subsels o/lR,
such that sup lX,,l * 0, then the subspace

X : {r € H' : for each n, either xn = 0 or rn a Xn}
of H' is contpact" is nonconstrucliue.; it intplies LLPO.
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Proof. It will suffice to consider the case r - 1. Given n € IR, define Xt = Xz =
{o}, and Xn j {0} for n 2 3. Choose a decision sequence {47,} so that lal < llk
whenever ok =0, and lal ) 0 whenever tl. - 1. Define rk = 0 when ok = 0. When
6k = l, define *u : (o,0,...) if a ) 0, but rk: (0,d,0,...) if a < 0. It is easy to
verify that {ck} is a Cauchy sequence in X, and thus c} --- r for some point r : (nn)
in I11. By hypothesis, r €. X; thus either cr = 0 ot c1 - a, and also either cz = 0 or
12 = a. Tf x1 - 0, then clearly a ( 0, for a ) 0 would imply o* = 1 eventually, and
then 11 - a. Similarly,if 12=0, then a 2 0. Finally, if c1 - 12= a, then o = 0, for
a + 0 would contradict the fact that r € F11. Thus LLPO obtains; this shows that
X is not constructively complete. (The subspace X is totally bounded, as may be

shown by the method used for the first part of Theorem 4.2.) D

Using Theorem 4.2 we can now return to the defining condition used in Theorem
4.1, while partially relaxing the condition that 0 e Xn for all n. For this result, we

will need Bishop's Theorem: If X is a compacl metric space, and g : X --- IR fs
uniformly continuous, lhen the subspace {r € X : g(r) I a} is compact for all but
countablg many real numbers a) inf g. See [1, pp. 101-102], or [2, pp.98-99].

4.4. Theorem. Let {X") be a sequence of compact subsets of R, such that
sup lX,, | - 0, and such thal lhere is a f,nite set P of al mosl r positiae integers, with
0 e Xn for all n # P, and p(0,X") > 0 for all n e P. Then the subspace

X :_ {r e H, : rn € Xn for all n}

of H' is contpact.

P roof . Theorem 4.2 shows that the subspace

Y : {r € H' : nn € Xn whenever h + 0}

is compact. The function f :Y ---' R defined by

f(*) = f[ lr"l (r eY)
n€P

is uniformly continuous on Y. Define 6 = llrrep p(0,X"); it is then easily seen that
X - {r €Y : f(n) 2 6} = {r €Y : f(r) > 0}. By Bishop's Theorem, there exists a
real number a, with 0 < a ( 6, such that {r €Y : f(r) 2 a} is compact; thus X is

compact. D

In the above theorem, the condition that p(0, X") ) 0 for all n € P may not be

omitted, as will be shown in the next example. We must first show, in the lemma
below, that the condition "rn * 0" used in the definition of H' may be weakened
to "rn is not 0". For this it will be convenient to use the following proposition, a

generalization of [7, 12.10].

4.5. Proposition. If S is the negation of some slalemenl R, and T is any

statent,enl such that --T is true, and T + S, then S is true.

P roof . Since T + S, we have -S + -?, and thus

--T ) --S € ---ft <+ -R <+ S. tr



Finitary Sequence Spaces 427

4.6. Lemm a. For any point r: (rn) in H, the following are equiualent.

(i) r e H'.
(1i) Wheneaer P is a finite set of r positiue integers with rn not 0 for all n e P,

then r^ = 0 for all nt ( P.
(iri) Wheneuer P is a finite set of positiue inlegers with rn not 0 for all n, €. P, then

card P ( r.

Proof. Let x e H', let P be as specified in (ii), and let m ( p. Define
c = flrrep lc,rl; then, by [7, 3.8], c is not 0. By the preceding proposition, to prove
rtn-- 0wemayassumec ) 0. Thus lr,rl > 0forall n e P, anditfollowsthat
xm = 0. The converse is immediate, as is the equivalence of (iii). D

4.7. Dxampl e. The statentenl "If {X,"} is a sequence of compact sub,sets of w,
such that sup lXr, | * 0, and such that there is a finite set P of at mosl r posiliue
integers, with 0 € Xn for all n ( P, then the subspace

X : {r € H' 
" 
rn e Xn for all n}

of H' is compact" is nonconstructiue; it is equiualent to WLPO.
Proof . It will suffice to give the proof for I11. We will establish WLPO ("he

Weak Limited Principle of Omniscience) in the following form: For any real nurnber
a ) 0, either a= 0, oritis contradiclorythat a-0. Wemayassumethat a < 1.

Define Xt = [o, 1], and Xn ] [0,11n] for all n ] 2. By hypothesis, X is compact.
Define y = (0, 1,0,.. .); either g(y,X) ( I or p(A,X) > Il2. In the first case, choose
a point r: (rn) in X with p(A,r) < 1; it follows that x2 ) 0. Thus rr : 0 and
a = 0. In the second case, where p(y,X) > Il2, the point (0,112,0,...) cannot lie in
X, and thus a cannot be 0. Thus WIPO obtains; this shows that X is rrof located.
(Note. The subspace X is bounded and equisummable.)

Now assume WLPO. It follows from Lemma 3.8 that X is equisummable. Let
6 > 0 and choose I/ so that DL"*, lr"l< ef Sfor all r € X, and so that I/ ) n for
all n € P. Using WLPO, we find that for each n € P, either 0 € Xn or 0 ( Xn (t.e.,
A(O,X") is not 0); thus we may assume that 0 ( Xnfor all n € P. For each n ( ly',
choose afinite e/3r approximation Y" to Xrr, with 0 €Yn when z ( P, and define

Y = {y € H' :an €Ynfor n ( ly', and Un = }for n > N}.

Then Y is afinite subset of X. Let r € X and partition {1, 2,...,1/} = PUTfLW so
that lc,,l < elSN for all n €T, and lr,,l > 0 for all n € W. It follows from the lemma
that card (P UW) ( r. For all rr. € P lJW,choose Un eYn so that lAn - rnl < ef\r,
anddefine An=0 otherwise. Thenthepoint3r=(y") liesinY,and g(x,y) (e. This
shows that X is totally bounded. !
5. Locally cornpact subspaces

5.1-. Definitions. In [1], [2], and [11] the terun locally compact is used in
various restricted senses. Here we use the term in its traditional sense: every point
has a compact neighborhood. In the theory of metric spaces one is especially interested
in those locally compact spaces which have metrizable one-point compactifications.
These have been characterized constructively in [ll]. Thus we say that a metric
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space X is metrically locally compacl if it is the union of an increasing sequence of
compact subsets, each of which is a uniform neighborhood of the preceding subset.
(Classically, any neighborhood of a compact set is a uniform neighborhood, and a
metric space is metrically locally compact if and only if it is locally compact and
separable [3, p. 247].)

We first give some examples of subspaces of f1 which are not locally compact, and
will then construct a large class of metrically locally compact subspaces of H .

5.2. Example. Let r ) l. If n is any poinl of H'-1, then r has no compact
neighborhood in H' . Thus H' is not locally compact.

P roof . If suffices to consider a point n of G'-r. Let V be any neighborhood of r
in H', choose e > 0 so that the closed e-sphere about c is contained in 7, and choose

a positive integer p so that frn = }for all n > p. For each k ) p,define yf : e, and
yk:-rnfor nf k. Then yk =(ah) is apoint of Tforeach & ) p, and thisshows that
V is not equisummable. It follows from Theorem 3.9 that V is not totally bounded.

!
5.3. Definitions. For any r ) I,let U' be the subspace of fI consisting of

all points with at least r nonzero terms. Let U be the subspace consisting of all
points with infinitely many nonzero terms, and let fI* be the subspace consisting of
all points with at most finitely many nonzero terms.

The method of Example 5.2 shows also that U' , U, ff * and H arc not locally
compact.

The next proof requires Bishop's Lemma: Let A be a complete located subset of
a nt,elric space X. If r € X, and g(x,y) ) 0 for ally e A, then p(r,A) > 0. See

17, 5.41.

S.4Proposition.
(r) For any r t I, the subspace (J' is the metric complement H - H'-t , and (/' is

a dense open subset of H . Thus each space H' is nowhere dense in H.
(ii) Y = f^13, U,, and U is dense in H .

(iii) 11- = U[r H', and H* is dense in H.

P roof . Let r € U',and choose a set Q of r positive integers such that rn f 0 for
all n € Q. Let y e H'-1. Since ly"l > 0 for all n e Q is not possible, we must have

ly,l< lr,,lfor some n € 8. Thus p(r,A) > 0. By Bishop's Lemma, Q(r,H'-r) > 0,

and thus x Q H - H'-1.
Now let xQH -H'-r. Since g(c,0) ) 0, there is apositiveinteger nsuch that

rn+0. If r = l this shows that r €Ur.If r ) 1we use the term r,,to construct
a point y of H'-r. Since g(x,y) ) 0, there is a positive integer m * n such that
r^* 0. Continuing, we obtain r nonzero terms of r; thus r €U'.

The remaining statements are easy to verify. n

5.5. Definition. Let L' be the subspace of fI consisting of all points with
exactly r nonzero terms. Since it is clearly dense in I1', the subspace L'is located
tn H.

5.6. Theorem. For any r ) I, the subspace L' is the metric complemenl
Hr - H'-7, and L' is metrically locally compact.
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Proof . L' : H'nu' = H' - Hr-l. For all positive integers k ) r, ancl all n,
define

on:[{c€R:rlk<lol <fr} when n1k,
I {0} when n > k.

By Theorem 4.2, the subspaces

Xk : 1* e H' : xn € Xj whenever x^ f 0j

are compact. By Bishop's Theorem, there exist real numbers cr6, with l/(& + 1) <
an I Ilk, such that the subspaces

Bn: 1r € Xk : Q(x, H'-1) > ou)

are also compact. Clearly L' =U\rBp, and each set 8611
hood of Bp in tr'. Thus .L' is metrically locally compact.

is a uniform neighbor-

5.7. Remarkr. (1) For r ) 1, the metric complement,Il'
compact, as the method of Example 5.2 shows.

(2) The subspace tr" is not locally compac.t in the sense of [1] and [2], where a space
is said to be locally compact if every bounded subset is contained in some compact
subset. The set X of all points x : (rn) in l" with all lc,,l < I is boundecl, by
Proposition 3.12, but not equisummable, and thus, by Corollary 3.10, X is containecl
in no compact subset of L' .

5.8. Example. For any r ) l, the statement "H, is o-cornpact,, is noncon-
slructiue; it is equiualent to LPO.

Proof . Let {a6} be a decision sequence. By hypothesis, H, = ULrX*, where
each set Xr is compact. By Corollary 3.10, for each fr there exist positive integers
Nri (j ) 1) such that lr,,l < llj whenever r = (xn) is a point of X1, ancl n 2 N,ci.
We may assume that {N;i} is increasing in both indices. If n - Nm for some &, and
ap { apa1, we then define rn = lf k; otherwise define rn:0.This defines a point
x: (rn) of H'. Choose & so that r € X*. Either an = L or o1 - 0. In the latter
case, let j > k and suppose o7 ( ai11. Define rl : Nii; thus r^ - llj. However,
nt' - Nii 2 N*i, so le-l < Il j,a contradiction. Thus all ai - 0. Hence LPO obtains.

Now consider the converse. For any k> I, Theorem 4.1 shows that the subspace

Xk : {x € H' :lr,l1& when n I k, and c,, - 0 when n > k}

is compact. Clearly, Dr -- UL,Xn, and thus D'is a-compact. Applying LpO,
Example 2.7 shows that D' = H'; thus 11" is o-compact. D

It follows that each space lf is classically a-compact, but not constructively. The
space H, however, is not classic.ally a-compact. In fact, Il is not a-compact in a
strong, affirmative sense:

5.9. Proposition. The space H is not o-contpacr, in r,he sense that if {xr}
is anu sequence. of conrpac.t subsets of H, then there erists a point y of H such that
q(y, X*) > 0 for all k.

Proof . Using Theotem 3.11, choose, for each ft, a positive integer /fi, such that
D,_ar- b,l < lf2k for all c € X6. We may assume that {Nr} i. increasing. Define

ANu = Il2n+r, and y,, : 0 otherwise. Then A = @,) is a point of 11. For any fr, ancl

I

- {0} is not locally
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any r € Xn,we have Di"=r- lr"l <Di"=r- ly,l, and thus p(y, r) > 0. It follows from
Bishop's Lemma that g(y,Xu) > 0. o
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