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Abstract

This paper studies the metric structure of the space H" of absolutely summable
sequences of real numbers with at most r nonzero terms. H" is complete, and is
located and nowhere dense in the space of all absolutely summable sequences.
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1. Introduction

1.1. Many developments in mathematics may be described as continual refinements
by means of finer and finer distinctions. Thus, the irrational and transcendental,
the continuous and differentiable, and so forth. The constructivist tradition may
easily be viewed in this manner. Eschewing dependence on classical tenets, such as
the principle of excluded middle, we find that concepts often split into several quite
distinct fragments. Here we explore one aspect of the question — What is Finite? -
from a constructive viewpoint.

The usual notion of a finite set entails correspondence with an initial segment of
the positive integers. What then is an infinite series with only finitely many non-zero
terms? Are we given a finite set of r indices, the corresponding non-zero terms, and a
guarantee that all other terms are zero? Or may some of the specified terms also be
zero? Or is there given merely an upper bound r for the number of nonzero terms? In
which case, deprived of classical omniscience, we cannot determine where the nonzero
terms might be situated! Or do we have a finite upper bound for the indices of the
non-zero terms?

We find that by adopting the appropriate definition we may construct a family
{H"} of complete subspaces of the space H of all absolutely summable sequences.
We shall explore the metric structure of the spaces H", and of their totally bounded,
compact, and locally compact subspaces.
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How did the problem of finitary sequence spaces arise? A counterexample space
often used in topology is known as the “Hedgehog”. This metric space J is the union
of countably many copies of the closed unit interval I = [0,1], with all the points
0 identified. In the course of constructivizing this space, a problem arises; although
J is classically complete, the proof is not constructive. To obtain a constructively
complete space, a modified construction is required.

The original definition of the Hedgehog may be viewed as follows: To construct a
point of J, choose a number « in the interval, and an index k to indicate which copy of
the interval is intended. It is possible to define a Cauchy sequence of such points whose
(classical) limit cannot be found constructively. To describe the counterexample very
roughly, the points change index so rapidly, and approach zero so closely, that one
cannot see whether they tend to zero, or stop short of zero in one of the interval
coples, whose index cannot be observed. (The precise Brouwerian counterexample is
given below in Example 2.2.)

To resolve this problem, we notice that the specification of the index k is necessary
only when the number « is positive. Thus a classically equivalent construction of the
space J 1s the set of all sequences in I with at most one nonzero term. The previous
(multiple) point 0 becomes the constantly 0 sequence. The point « in the k" interval
becomes the sequence z = (z,) with z; = «, and z, = 0 for n # k. Classically,
no new polnts are introduced. Constructively, however, new points are provided:
the limits of Cauchy sequences which previously had no constructive limits. Such a
point is a sequence in I with at most one nonzero term, but for which we can neither
specify a nonzero term, nor prove there is none. Here is a simple example: Conduct a
sequential search for a counterexample to the Goldbach Conjecture. If the conjecture
is verified up to the (k — 1)'* step, define z* to be the point of J with value 1/k
in the k™ interval. However, if the first counterexample is found at the j'* step,
define ¥ = 27 for all k > j. Then {2*} is a Cauchy sequence which has no limit
in the original space J. (Brouwerian counterexamples of this sort are discussed more
precisely in [1], 2], and [10].) Now define the sequence z = (z,) by z, = 1/n if the
first counterexample is found at the n** step, and z,, = 0 otherwise. Then z is a point
of the space J defined by sequences, and z* — z.

The classical Hedgehog J is described as the set of pairs (a, k), where o € I and
k € Z*, with all pairs of the form (0, k) identified, and with metric g defined by

| Je=8] if k=7,
ek aip={ 0o k2
With the sequence definition of J this may be written simply as
Q(m1y) = Z |xn - yn|'
n=1

Now, however, since we do not require knowledge of the location of the possibly
nonzero term (as was necessary to obtain a complete space), we have introduced a
problem in constructively defining the metric. We must require summability of the
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sequence which determines a point of J. As absurdly trivial as it may seem to sum
a sequence which is all zeros except for at most one term, the constructive necessity
of this condition becomes clear when one substitutes 1 for 1/n in the example just

given above. If it were possible to estimate the sum of the resulting sequence, then
Goldbach’s Problem would be solved.

We generalize the Hedgehog by considering, for any positive integer r, the space
H" of absolutely summable sequences of real numbers with at most r nonzero terms.
The original Hedgehog J [4, Ex. 4.1.5] is realized as a located subspace of H' in
Lemma 3.3 below.

1.2. Summary of results. The results obtained here are constructive in the
sense of ERRETT BisHOP’s Foundations of Constructive Analysis [1]. One exposition
of the constructivist thesis may be found in [8].

This paper studies the metric structure of H”. The space HT is complete, and is lo-
cated and nowhere dense in the space H of all absolutely summablesequences. Totally
bounded and compact subspaces of H™ are characterized. The essential characteristic
of a totally bounded subspace of H" is a common sequence of summability parameters
for the sequences in the subspace. Large classes of located, totally bounded, and com-
pact subspaces are constructed. Although the spaces H" are classically o-compact,
none is constructively o-compact. The space H” 1s not locally compact, but does
contain a dense, locally compact subspace L, consisting of sequences with exactly r
nonzero terms.

A number of Brouwerian counterexamples have been included where appropriate,
in order to determine as closely as possible the constructive limits of the theory. This
method is described in [1], [2], and [10]. Most of the examples are given in a form
which shows a certain statement nonconstructive because 1t is equivalent to one of a
number of nonconstructive omniscience principles. Since these omniscience principles
are classically valid, these counterexamples are at the same time classical proofs of
the propositions involved.

Projected studies will consider the characterization and construction of real-valued
continuous functions on H”, and of continuous mappings between the various spaces
H™, and between H"™ and the Euclidean spaces.

1.3. Preliminaries. For real numbers o we distinguish between the concepts
“u is not zero” and “a is nonzero”. The first means that it is contradictory that o«
be zero. The second, which is much stronger, and more often used, is written o # 0,
and means |a] > 0. The condition 8 > 0 means that for some positive integer k, an
explicit rational approximation g has been found, to within 1/k of 8, with ¢ > 1/k.

In lieu of the trichotomy of real numbers, which is not constructively valid, we will
make frequent use of the Constructive Dichotomy Lemma: If o < 3, then for any z,
either z < B or ¢ > «. See [1, p. 24], [2, p. 26] or [10, p. 16].

A finitely enumerable set of at most r elements, where r > 1, is a set of the form
A ={ay,ay,...,a.}. If, in addition, a; is not a@; whenever i # j, then A is called a
finite set of r elements. The void set is not considered finite. Other basic constructive
notions may be found in [1] or [2].
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2. Basic Structure of H"

2.1. Definitions. Let H denote the set of all absolutely summable sequences
of real numbers. Then H is a metric space, with distance ¢ defined by
- ,

g(:c,y) = Z Ixn "‘ynl

n=1

for any points z = (2, )52 and y = (y2)5%1. The (linear) space H is usually referred
to as £!, although the subspaces of H considered here will not be linear. The usual
proof that H is complete, a simple exercise, is constructively valid.

We are interested in points of H with at most finitely many nonzero terms, and
must make this notion precise. For any integer » > 1, it would seem natural to
consider the subspace G" consisting of all points z = (z,,) in H such that there
exists a finite set P of 7 positive integers with z, = 0 for all n ¢ P. However, this
space " is not constructively complete (see Example 2.2 below). A weakening of the
condition does yield a constructively larger space which is complete. Let H™ denote
the subspace consisting of all points £ = (z,,) in H such that whenever P is a finite
set of r positive integers with z, # 0 for all n € P, then z,, = 0 for all n ¢ P.
Equivalently, a point # = (z,,) of H lies in H” if and only if, whenever P is a finite
set of positive integers with z, # 0 for all n € P, then card P < r. Any sequence of
real numbers satisfying this condition will be called finitary of order r.

We will show that H" is complete, and that G” is a dense subspace. Thus the two
similar, classically equivalent, conditions used to define these spaces are constructively
distinct. For a point of H” the number of nonzero terms is limited by r, while for
a point of G” the r indices of the possibly nonzero terms must be specified. Finally,
let F™ denote the subspace consisting of all points z = (zn) of G" such that z, is
rational for all n. It will also be convenient to denote by H? the subspace {0}, where
0 denotes the constantly zero sequence.

We first show that the spaces G” are not constructively complete, demonstrat-
ing the need to consider H". For a discussion of the nonconstructive omniscience
principles such as The Limited Principle of Omniscience (LPO), see [10] or [7, Sec. 2].

2.2. Example. For any r > 1, the statement “G" is complete” is nonconsiruc-
tive; it 1s equivalent to LPO.

Proof. First assume that G" is complete. To derive LPO, let {a;} be a decision
sequence (a nondecreasing sequence of zeros and ones); we must show either that all
ar = 0 or that some a; = 1. We may assume that a, = 0. Define a sequence {z*}s
in G™ as follows. If a; = 0, let z* be the point of G" with :cfl =1 for all n < r, with
z¥ = 1/k, and with zF = 0 otherwise. If a; = 1, define 2% = zF-1. Tt is easy to verify
that {z*} is a Cauchy sequence in G”. By hypothesis, 2*¥ — y for some point y of G™,
so there is a set P of r positive integers such that y, = 0 for all n ¢ P. 1t follows that
P is of the form P = {1,2,...,r — 1,4}, with ¢ > r. Either y, < 1/q or Yg > 0. In
the first case, consider any k and suppose that a; = 1. Then there is an integer j > r
such that a; < aj41, and z¥F = 27 for all k > j. Thus y = 2/, and Y = :c; =1/j. It
follows that j = ¢, a contradiction; thus all ax = 0. In the second case, where yg > 0,
there exists k > ¢ such that :c;C > 0, and thus a; = 1.
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Conversely, let {z*} be a Cauchy sequence in G”. Since H is complete, F -z

for some z € H. Using LPO, we may determine whether z, = 0 or # 0 for
each n; define P = {n : z,, # 0}. Since z¥ — z, for each n, it follows that P is finite,
with card P < r; thus z € G". o

We now show that, for finitary sequences, convergence to zero ensures summability.

2.3. Lemma. Let z = (z,,) be a finitary sequence of real numbers, of order r.
Then the following are equivalent:

(i) z, — 0.
(i) Sz, is absolutely convergent (and thus x € H™).

Proof. Let ¢ > 0 and choose N so that |z,| < ¢/2r for all n > N. Let
M > N and partition {N,N+1,...,M}=TUP so that |z,| <e/2M foralln €T
and |zn| > 0 for all n € P. It follows that card P < r, and thus EQ’I:N lzn| =
et 18l + Xnep leal < M(e/2M) +r(e/2r) = €. o

2.4. Examples. (1) Let {a,} be a sequence of zeros and ones, with at most a
single one, for which we do not know whether some a,, = 1. While {a,} is finitary, we
do not know that a, — 0, nor that 3 a, converges. On the other hand, a./n — 0,
and thus ) a,/n converges.

(2) Let {an} be a sequence of zeros and ones, such that “all a, = 0” is contra-
dictory, but, constructively, we do not know when a, = 1. Define z, = 1/n, unless
a = 1 for some k < n, in which case define z, = 0. Then z, — 0. Classically,
we do know when a, = 1, so {z,} is classically finitary, and ) =, converges clas-
sically. However, {z,} is not constructively finitary, and 5z, is not constructively
convergent.

(3) Let {an} be a sequence of zeros and ones, with at most a single one, for which
we do not know whether some an, = 1, and let T = {a, : n € Z¥} be the set of
its terms. Then T has at least one, and at most two, elements, but 7' is not finitely
enumerable according to constructive usage.

(4) There is no constructive procedure for deciding, given a real number «, whether
a=0or a#0. Let r > 1 and let £ = (z,) be a point of H" with z; = 1. Then the
set A= {n € Z% : z, # 0} is nonvoid, but A need not be finite. Even when z is a
point of G™, so that A is a nonvoid subset of a finite set of r positive integers, A need
not be finite.

(5) A subset B of a set A is said to be detachable if for each point a in A, either
a € B or a¢ B. The statement “Every nonvoid detachable subset of the positive
integers is either finite or infinite” 1is nonconstructive; it is equivalent to LPO. This
is proved, not quite explicitly, in [9]. The set A of Example (4) is not, in general,
detachable. When the terms of z are rational, then A is nonvoid and detachable, and
not infinite, but still A is not, in general, finite.

2.5. Theorem. Each space H™ is complete.

Proof. Let {zF}$2, be a sequence of points in H” with «¥ — y, where y = (yn)
is a point of H. Let P be a finite set of positive integers such that y, # 0 foralln € P,
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define § = min{|y,| : » € P}, and choose a positive integer N so that o(z",y) < 6.
Then z?¥ # 0 for all n € P, and it follows that card P < r. Thus H" is closed in H.
[m]
2.6. Lemma. For any r, the subspace F" is dense in H".
Proof. Let 2 = (z,) be a point of H", and let ¢ > 0. Choose a positive integer
N so that 3,5 v |&n| < €/3. Partition {1,2,...,N} = PUT so that |z,| > 0 for all
n € P and |z,| < ¢/3N for all n € T. For all n € P, choose a rational number yn
so that |z, — yn| < £/3r, and define y, = 0 otherwise. Since card P < r, the point
y = (yn) lies in F'. Clearly o(z,y) < e. o
There is a third condition, distinct from the two so far used, which may be imposed
on points of H:

2.7. Example. Let r > 1 and let D" be the subspace consisting of all points
¢ = (z,) in H" such that there exists a positive integer p such that , = 0 for all
n > p. Then G" C D" C HT", but the statements “D” = H™ and “G"™ = D"” are
nonconstructive; the first is equivalent to LPO and the second to LLPO.

Proof. The case r = 1 will suffice to indicate the proof for any r. Assume that
D' = H! and let {a,} be a decision sequence. Define z, = 1/n if a, < an41, and
¢, = 0 otherwise. Then ¢ = (z,) is a point of H!, so by hypothesis there is a positive
integer p such that z, = 0 for all n > p. If a, = 0, then @, = 0 for all n; thus LPO
follows. The converse follows from Example 2.2 and Lemma 2.6.

Now assume that G' = D'. We will establish LLPO (The Lesser Limited Principle
of Omniscience) in the following form: For any real number a, eithera > 0, ora < 0.
Define £; = a V0, 3 = (—a) V0, and z, = 0 for all n > 3. This defines a point z
of D!; by hypothesis there is a positive integer p such that z, = 0 for all n £ p. If
p = 1 then a > 0, while if p # 1 then a < 0; thus LLPO follows. Conversely, given
z € D! we may use LLPO to choose a positive integer g such that |z, > |2,| for all
n. Then z, = 0 for all n # ¢, and it follows that z € G'. 0

3. Located and totally bounded subspaces

A metric space (X, ) is totally bounded if it contains a finite ¢ approximation for any
¢ > 0; equivalently, if it contains finitely enumerable approximations. A metric space
is compact if it is totally bounded and complete. A subset Y of a metric space X Is
located if the distance o(z,Y’) to the subset may be measured from any point z in X.
Compact subspaces are always located. The metric complement X —Y of a located
subset Y is the set of points in X situated at a positive distance from Y. These and
other constructive properties of metric spaces are developed in [1] or [2]. We will also
need the following elementary properties of located sets [5]: The closure of a located :
subset of a metric space is also located. A dense subset of a located subset is also
located. If Y is a subset of a metric space X, and g(z,Y) exists for all points z
in some dense subset of X, then Y is located in X. A method for constructing all
located sets on the real line is given in [6].

While classically every subset of a metric space is located, in a constructive study
it is a central concern to identify sufficiently many located sets. An example is the
construction of compact subspaces of H" in Theorem 4.1 below, using Lemma 3.3,
which constructs a large class of located sets. We require first a routine calculation.
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3.1. Definition. Let A be a finitely enumerable set of at most N real numbers,
and let € > 0. An ¢ approzimate ordering of A is an enumeration A = {a1,as,...,an}
in which a; < aj + ¢ whenever 1 <1< j < N.

3.2. Proposition. Every finitely enumerable set of real numbers has ¢ approz-
imate orderings for alle > 0.

Proof. If N = 2 and A = {b,c}, either b < c or b > ¢ —¢; define a; = b or
a; = c accordingly. If N > 2, write A = B U {b}, and by induction construct an
¢/2 approximate ordering B = {ay,az ...,any—1}. For each i with 1 <¢ < N -1,
determine either b > a; —¢/2 or b < a; +¢/2, and define o; = 0 or o; = 1 accordingly.
If all o; = 0, define ay = b; if all o; = 1, define ag = b. If 0; # 0;41 for some i, then
{a1,az,...,ai,b,a;41,...,an—1} is an € approximate ordering of A. a

3.3. Main Lemma. Let {X,} be a sequence of located subsets of R, with0 € X,
for each n. Then the subspace X = {& € H" : &, € X, for alln} of H" is located
m H.

Proof. Let y € H, and for each k > r, partition {1,...,k} = Ly U Si so that
card Ly = r and |yn| — 0(¥n, Xn) > |[Ym| — €(¥m, Xm) — 1/k whenever n € Ly and
m € Si. Define

dy = Z Q(yn>Xn)+ E Iyn‘;
neLy n¢Ly
thus dp = 3 ory 0(Yny Xn) + 2oner, vn] — @(¥n, Xn)]. Let € > 0 and choose N so
that 1/N < ¢, and so that 6, = Fyn| — o(yn, Xn) < eforalln>N.Ifj>k>N,
then L; is obtained from L by replacing at most 7 indices n, corresponding to each
of which the change in 6, is less than ¢; thus |d; — d;| < re. Hence {d}} is a Cauchy
sequence; define d = limy, d.

Now let € X, and let € > 0. It is not difficult to construct a point w in X N G"
with o(z,w) < € (cf. Lemma 2.6). Choose a set @ of r positive integers such that
w,, = 0 for all n ¢ Q. Choose a positive integer k so that k > n for all n € @, so that
1/k < g, and so that d > d —¢. Then

e(y,w) = Yoiilvn —wal .
Yone ltn — wal + 20 gq lunl

> EnEQ Q(yn,Xn)+En¢Q |n |
= oo o(yn, Xn) + EngQ“ynl — 0(yn, Xn)]
> Yo 0y Xn) + ngr,llyn] — olyn, Xn)l —r/k

dp —r/k > d— (r+ D).

Thus d < o(y, z) + (r + 2)e.

Finally, for any k, choose z, € X, 50 |yn — 2n| < 0(Yn, Xn) + 1/k for all n € Ly
and define z, = 0 otherwise. Then z € X and

Q(yaz) :E|yn_zn|< Z Q(yn)Xn)'*‘r/k'*‘ Z |yn|:dk+r/k-
n=1

neLly neLk
This shows that o(y, X) = d. 0O



Finitary Sequence Spaces 423

Remark. Taking » = 1 and X, = [0,1] for all n, the original Hedgehog J 1s
realized as the located subspace X N Gl

3.4. Theorem. Each space H" is located in H. u]

3.5. Example. For any r > 1, the statement “For any point y of H, there ezists
a point z of H” such that o(y, H™) = o(y,z)” is nonconstructive; it 1s equivalent to
LLPO.

Proof. It will suffice to give the proof for r = 1. Let a € R, and define
y=(l+4+a,1—-a,0,...). By hypothesis, choose z € H! such that o(y, H') = o(y, 2).
It will now be convenient to derive certain consequences of implications involving the
conditions a > 0 and a < 0, although of course we have no method for obtaining such
determinations. If a > 0, then it is clear that z = (1 +¢q,0,.. ); so z1 > 1. Thus
21 < 1 implies a < 0. Similarly, if a <0, then z = (0,1 -a,0,...), and z; = 0. Thus
z; > 0 implies a > 0. Since we can determine either that z; < 1 or that z; > 0, it
follows that either a < 0 or a > 0.

Conversely, assume LLPO and let y € H. Construct a decision sequence {0} such
that o(y, H') < 1/k when o =0 and o(y, H') > 0 when o}, = 1. Define a sequence
{z*} in H! as follows. When o} = 0, choose a point z¥ in H! so that o(y, 2*) < 1/k.

When o = 1, we will first define 2% in the case where k is the least such integer,
and then define 2/ = zF for all j > k. Choose a positive integer m such that |yn| > 0,
and choose N so that |y| < |ym| for all n > N. Using LLPO, choose p < N so that
|yp| > |yn| for all n, and define 2% to be the point of H' with z} = y,. Let ¢ € G?
and choose ¢ so that z, = 0 for all n # q. Then o(y, ) 2 Y 2 [Ynl > D nzp lyn| =
o(y, z*). 1t follows (in this case) that o(y, 25) = o(y, H'). This defines the sequence
{<*}.

Now let k < j. If o; =0, then o(2%,29) < 2/k. If o, = 1, then z¥ = z/. Finally,
if o) = 0 and o; = 1, then o(y, z¥) < 1/k and oy, ) = o(y, H') < 1/k; thus
o(2¥,27) < 2/k. Hence {z*} is a Cauchy sequence, and zF — 2 for a point z of H'.
Since 0 < o(y, zF) — o(y, H') < 1/k for all k, it follows that oy, H') = o(y, 2)- O

3.6. Remark. Using the same method, and the representation of located sets
on the line by notches [6], one may also show that the statement “For any complete
located set X C R, and any point y in R, there exists a point z in X such that
o(y, X) = e(y, z)” is equivalent to LLPO.

We wish to construct compact subspaces of H", and will first characterize the
totally bounded subspaces of H” and H. In any metric space, a totally bounded sub-
space is bounded and located. For subspaces of the Euclidean spaces, these conditions
are also sufficient, although they are usually not sufficient in other spaces.

3.7. Definition. A family X of sequences of real numbers is said to be equi-
summable if for any € > 0 there exists a positive integer N such that Yoo nlEnl <e
for any sequence ¢ = (&) in X.

The proof of the following lemma is virtually the same as that of Lemma 2.3.
(A counterexample to the corresponding statement in H is given by the family of
sequences of the form (1/n?), for p > 1.)

3.8. Lemma. A subspace X of H" is equisummable if and only if for any e > 0
there ezists a positive inleger N such that |zn| < ¢ for all points = (zn) in X, and
alln> N. ]
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3.9. Theorem. A subspace X of H" 1is totally bounded if and only of it 1s
bounded, located, and equisummable.

Proof. First let X be totally bounded, and let ¢ > 0. If A is a finite €/2
approximation to X, and Y .y |an| < €/2 for each a € A, then S0 N lzn| < € for
all z € X.

Conversely, let X satisfy the three conditions, and let £ > 0; we may assume that
¢ < 1. First choose a positive integer N so that Y oy |zs| < € for all z € X, and
choose a real number X so that g(z,0) < A—1for all z € X. Now choose a finite £/N
approximation B to the interval (—A, A), with 0 € B. Define

Y={yeH :y, € Bwhenn <N, and y, =0 when n > N}.

Then Y is a finite subset of H™. Since X is located, we may partition Y = WUT
so that g(y, X) < 5e for all y € W and o(y,X) > 4e forally € T. For each y € W
choose ¥ € X such that o(y,y’) < 5¢ and define Y’ to be the set of all points ¥’ so
obtained. Then Y’ is a finitely enumerable subset of X.

Now let z € X. Choose z € G so that g(z, 2) < ¢, and choose a finite set P of r
positive integers such that z, = 0 for all n ¢ P. It follows that Yoo n |za] < 2¢ and
|za] < A for all n. For each nin @ = {n € P : n < N}, choose a number y, € B so
that |2, — ¥n| < €/N, and define y, = 0 for all n ¢ Q. Then the point y = (y,) lies in
Y and Q(y: X) < g(:c,y) < g(:L’,Z)-}—g(Z,y) < E+En<N |2 — yn|+2n>N |2 — Ynl <
e+ N(¢/N)+ 2 = 4e. 1t follows that y € W and ¢(z,y’) < 9¢. Hence Y’ is a finitely
enumerable 9¢ approximation to X. This shows that X is totally bounded. 0O

3.10. Corollary. A subspace of H" is compact if and only if it s closed,
bounded, located, and equisummable. m]

Minor changes in the proof of Theorem 3.9 will yield a proof of the following

3.11. Theorem. A subspace X of H is tolally bounded if and only if il 1s
bounded, located, and equisummable. a

The following proposition shows that, in applying Theorem 3.9 and Corollary 3.10,
the boundedness condition may be verified termwise.

3.12. Proposition. A nonvoid subspace X of H" is bounded if and only if
there is a real number X such that |z, < X for all points ¢ = (2n,) in X, and all n.

Proof. Let the given condition hold, let z € X, and let ¢ > 0. For any N,
partition {1,2,..., N} = WUT so that |z,| > 0 for all n € W and |zn| < /N for all
n € T. 1t follows that card W < r, and thus 3N |za| = Sonew 1Znl + 2 ep 20| <
rA+ N(e/N)=rX+e. Thus g(2,0) <rAforallz e X. ‘0

4. Compact subspaces

We now consider methods for constructing a compact subspace X of H". We begin
with a sequence {X,, } of compact subsets of the real line, and use the set Xy to restrict
the nt* term z, of a point £ = (z,) of X. This may be done in two ways, requiring
either that z, € X, for all n, or only that z, € X, whenever z, # 0. A third

condition, “for each n, either z, = 0 or z, € X,,”, will not produce a constructively
complete subspace.
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The first, and simplest, method relies on the previous results on located and totally
bounded subspaces. (A counterexample, showing that the corresponding construction
in H will not produce a compact subspace, may be obtained using sequences of the
form (1/nP), for p > 1.)

4.1. Theorem. Let {X,} be a sequence of totally bounded subsets of R, with
0 € X, for each n, and sup |X,| — 0. Then the subspace

X={z€H :z, € X, for alln}

of H 1is totally bounded. If, in addition, each set X, is compact, then X is compact.

Proof. It follows from Lemma 3.3 that X is located in H”, from Lemma 3.8 that
it is equisummable, and from Proposition 3.12 that it is bounded. Thus, by Theorem
3.9, X is totally bounded. When each set X, is compact, then X is closed in H",
and thus X is compact. O

We wish to relax the requirement that 0 € X, for all n. One method is the
following; this result will be needed to construct the locally compact subspaces L™ in
Theorem 5.6.

4.2. Theorem. Let {X,} be a sequence of totally bounded subsets of R, such
that sup | X,,| — 0. Then the subspace

X={z€H :z, € X, whenever z, # 0}

of H” 1s totally bounded. If, in addition, each set X, is compact, then also X is
compact.

Proof. It follows from Lemma 3.8 that X is equisummable. Let € > 0 and choose
N so that 3°77 \ .\ |24 < /3 for all z € X. For each n < N, choose a finite £/3r
approximation Y, to X,. Let Y be the set of all points y = (y,,) in H" such that

(i) when n < N, then either y, = 0 or y, € Yy, and

(ii) when n > N, then y, = 0.
Then Y is a finitely enumerable subset of X. Let £ € X and partition {1,2,...,N} =
T UW so that |z,| < ¢/3N for all n € T, and |z,| > 0 for all n € W. It follows
that card W < r. For each n € W, choose y, € Y, so that |y, — z,| < £/3r,
and define y, = 0 otherwise. Then the point y = (y,) lies in Y, and o(z,y) =
ZnEW [Yn — zn| + ZneT |zn| + Zn>N lzn| < r(e/3r) + N(e/3N)+¢/3 = e. This
shows that X is totally bounded.

Now let each set X, be compact, and let {z*} be a sequence in X with ¥ — z,
where z = (2,) is a point of H". If for some n we have z,, # 0, then for sufficiently
large k we have z¥ # 0, and thus =X € X,,; thus =, € X,,. Hence ¢ € X; this shows
that X is closed in H". ml

A slightly stronger condition produces a constructively smaller subspace which is
not compact, as shown in the next example. (On the other hand, it was necessary to
use a form of this stronger condition to obtain the finitely enumerable set Y in the
last proof.)

4.3. Example. The statement “If {X,} is a sequence of compact subsets of R,
such that sup | X,| — 0, then the subspace

X ={z € H : foreach n, eitherz, =0 orz, € X,,}

of H™ 1s compact” is nonconstructive; it implies LLPO.
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Proof. It will suffice to consider the case r = 1. Given a € R, define X; = Xy =
{a}, and X,, = {0} for n > 3. Choose a decision sequence {0y} so that |a| < 1/k
whenever o = 0, and |a| > 0 whenever oy = 1. Define z¥ = 0 when o = 0. When
or = 1, define F = (a,0,...) if @ > 0, but ¥ = (0,4,0,...) if a < 0. It is easy to
verify that {z*} is a Cauchy sequence in X, and thus ¥ — z for some point z = (z,)
in H!. By hypothesis, £ € X; thus either 21 = 0 or 1 = a, and also either 3 = 0 or
zy = a. If zy = 0, then clearly a < 0, for a > 0 would imply o = 1 eventually, and
then 1 = a. Similarly, if 2o = 0, then a > 0. Finally, if ¢; = z, = a, then a = 0, for
a # 0 would contradict the fact that z € H!. Thus LLPO obtains; this shows that
X is not constructively complete. (The subspace X is totally bounded, as may be
shown by the method used for the first part of Theorem 4.2.) O

Using Theorem 4.2 we can now return to the defining condition used in Theorem
4.1, while partially relaxing the condition that 0 € X,, for all n. For this result, we
will need Bishop’s Theorem: If X is a compact metric space, and g : X — R s
uniformly continuous, then the subspace {z € X : g(z) < a} is compact for all but
countably many real numbers a > inf g. See [1, pp. 101-102}, or [2, pp. 98-99].

4.4. Theorem. Let {X,} be a sequence of compact subsets of R, such that
sup | Xp| — 0, and such that there is a finite set P of at most r positive integers, with
0€ X, foralln ¢ P, and 9(0,X,,) > 0 for alln € P. Then the subspace

X={zeH :z, € X, foralln}

of H" ts compact.

Proof. Theorem 4.2 shows that the subspace
Y ={z € H" :z, € X, whenever &, # 0}

is compact. The function f :Y — R defined by

f@)=J] lzal (ze€Y)

neP

is uniformly continuous on Y. Define § = nneP 0(0, X,,); it is then easily seen that
X={zxeY:f(x)>é}={z €Y : f(z) >0} By Bishop’s Theorem, there exists a
real number o, with 0 < « < §, such that {z € Y : f(z) > a} is compact; thus X is
compact. O

In the above theorem, the condition that ¢(0, X,,) > 0 for all n € P may not be
omitted, as will be shown in the next example. We must first show, in the lemma
below, that the condition “z, # 0” used in the definition of H™ may be weakened
to “x, is not 0”. For this it will be convenient to use the following proposition, a
generalization of [7, 12.10].

4.5. Proposition. IfS is the negation of some statement R, and T s any
statement such that ==T is true, and T = S, then S is true.

Proof. Since T = S, we have =S = =T, and thus

T =S -——mRe-Re S 0
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4.6. Lemma. For any point £ = (z,) in H, the following are equivalent.
(i) z € H".
(i) Whenever P is a finile set of r posilive integers with x, not 0 for alln € P,
then z,, =0 for allm ¢ P.

(ili) Whenever P is a finite set of positive inlegers with x,, not 0 for alln € P, then
card P < r.

Proof. Let z € H", let P be as specified in (ii), and let m ¢ P. Define
¢ = [lnep l®nl; then, by [7, 3.8], ¢ is not 0. By the preceding proposition, to prove
zm = 0 we may assume ¢ > 0. Thus |z,| > 0 for all n € P, and it follows that
Zm = 0. The converse is immediate, as is the equivalence of (iii). O

4.7. Example. The statement “If {X,} is a sequence of compact subsets of R,
such that sup |X,| — 0, and such that there is a finite set P of at most r positive
integers, with 0 € X,, for alln ¢ P, then the subspace

X={ze€H :z, € X, for all n}

of H™ ts compactl” is nonconstructive; it is equivalent to WLPO.

Proof. It will suffice to give the proof for H'. We will establish WLPO (The
Weak Limited Principle of Omniscience) in the following form: For any real number
a > 0, either a = 0, or it is contradictory that a = 0. We may assume that a < 1.
Define X; = [a,1], and X,, = [0,1/n] for all n > 2. By hypothesis, X is compact.
Define y = (0,1,0,. . .); either g(y, X) < 1 or p(y, X) > 1/2. In the first case, choose
a point ¢ = (2,) in X with o(y,z) < 1; it follows that £ > 0. Thus z; = 0 and
a = 0. In the second case, where o(y, X) > 1/2, the point (0, 1/2,0,...) cannot lie in
X, and thus a cannot be 0. Thus WLPO obtains; this shows that X is not located.
(Note. The subspace X is bounded and equisummable.)

Now assume WLPO. It follows from Lemma 3.8 that X is equisummable. Let
"€ > 0 and choose N so that ZZO:NH |zn| < /3 for all z € X, and so that N > n for
all n € P. Using WLPO, we find that for each n € P, either 0 € X,, or 0 ¢ X,, (i.e.,
(0, X,) is not 0); thus we may assume that 0 ¢ X,, for all n € P. For each n < N,
choose a finite ¢/3r approximation Y, to X,, with 0 € Y,, when n ¢ P, and define

Y={yeH :yp €Y, forn <N, and y, =0 for n > N}.

Then Y is a finite subset of X. Let z € X and partition {1,2,..., N} = PUTUW so
that |z,| < /3N for alln € T, and |z, | > 0 for all n € W. It follows from the lemma
that card (PUW) < 7. For alln € PUW, choose y, € Y, so that |y, — z,| < ¢/3r,
and define y, = 0 otherwise. Then the point y = (y,) liesin Y, and o(x, y) < €. This
shows that X is totally bounded. ]

5. Locally compact subspaces

5.1. Definitions. In [1], [2], and [11] the term locally compact is used in
various restricted senses. Here we use the term in its traditional sense: every point
has a compact neighborhood. In the theory of metric spaces one is especially interested
in those locally compact spaces which have metrizable one-point compactifications.
These have been characterized constructively in [11]. Thus we say that a metric
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space X 1is metrically locally compact if 1t is the union of an increasing sequence of
compact subsets, each of which 1s a uniform neighborhood of the preceding subset.
(Classically, any neighborhood of a compact set is a uniform neighborhood, and a
metric space is metrically locally compact if and only if it is locally compact and
separable [3, p. 247].)

We first give some examples of subspaces of H which are not locally compact, and
will then construct a large class of metrically locally compact subspaces of H.

5.2. Example. Let r > 1. If z is any point of H"™1, then = has no compact
neighborhood in H". Thus H" is not locally compact.

Proof. If suffices to consider a point z of G"~1. Let V be any neighborhood of
in H™, choose € > 0 so that the closed e-sphere about « is contained in V', and choose
a positive integer p so that z, = 0 for all n > p. For each k > p, define yf = ¢, and
y* =z, for n # k. Then y* = (y¥) is a point of V for each k > p, and this shows that
V is not equisummable. It follows from Theorem 3.9 that V is not totally bounded.

O

5.3. Definitions. For any » > 1, let U" be the subspace of H consisting of
all points with at least » nonzero terms. Let U be the subspace consisting of all
points with infinitely many nonzero terms, and let H* be the subspace consisting of
all points with at most finitely many nonzero terms.

The method of Example 5.2 shows also that U", U, H* and H are not locally
compact.

The next proof requires Bishop’s Lemma: Let A be a complete located subset of
a metric space X. If zx € X, and po(z,y) > 0 for all y € A, then p(z,A) > 0. See
[7, 5.4]. .

5.4 Proposition.

(i) For any r > 1, the subspace U" s the meiric complement H — H ! and UT is
a dense open subset of H. Thus each space H™ s nowhere dense in H.

(i) U=oe, Ur, and U is dense in H.
(iii) H* = U,2, H", and H* is dense in H.

Proof. Let ¢ € U™, and choose a set Q of r positive integers such that z, # 0 for
alln € Q. Let y € H™™. Since |y,| > 0 for all n € @ is not possible, we must have
|Yn| < |2n| for some n € Q. Thus g(z,y) > 0. By Bishop’s Lemma, g(z, H™™') > 0,
and thus ¢ € H — H™™1.

Now let £ € H — H™~!. Since g(z,0) > 0, there is a positive integer n such that
z, # 0. If » = 1 this shows that z € Ul. If r > 1 we use the term z,, to construct
a point y of H™~1. Since g(z,y) > 0, there is a positive integer m # n such that
T, # 0. Continuing, we obtain r nonzero terms of z; thus x € U".

The remaining statements are easy to verify. 0

5.5. Definition. Let L" be the subspace of H consisting of all points with
exactly r nonzero terms. Since it is clearly dense in H", the subspace L" is located
in H.

5.6. Theorem. For any r > 1, the subspace L" s the metric complement
H™ — H™ ! and L™ is metrically locally compact.
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Proof. L" = H"NU"™ = H" — H™~!. For all positive integers k > r, and all n,
define
P {aeR:1/k<|a|<k} when n <k,
"~ {0} when n > k.

By Theorem 4.2, the subspaces
Xk = {te H :z, € X,’: whenever x, # 0}

are compact. By Bishop’s Theorem, there exist real numbers ay, with 1/(k+1) <
a < 1/k, such that the subspaces

Br={z € X¥ :p(z, H') > a;}

are also compact. Clearly L™ = Uzozr Bg, and each set Bji is a uniform neighbor-
hood of By in L". Thus L is metrically locally compact. O

5.7. Remarks. (1) For r > 1, the metric complement H™ — {0} is not locally
compact, as the method of Example 5.2 shows.

(2) The subspace L" is not locally compact in the sense of [1] and [2], where a space
is said to be locally compact if every bounded subset is contained in some compact
subset. The set X of all points £ = (x,) in L™ with all |z,| < 1 is bounded, by
Proposition 3.12, but not equisummable, and thus, by Corollary 3.10, X is contained
in no compact subset of L".

5.8. Example. For any r > 1, the statement “H" is o-compact” is noncon-
structive; 1t 1s equivalent to LPO.

Proof. Let {ax} be a decision sequence. By hypothesis, H" = Ure; X, where
each set X is compact. By Corollary 3.10, for each k there exist positive integers
Nij (7 > 1) such that |z,| < 1/j whenever z = (z,,) is a point of X; and n > Ng;.
We may assume that {Ng;} is increasing in both indices. If n = Ny for some k, and
ap < ag41, we then define z, = 1/k; otherwise define z,, = 0. This defines a point
r = (zn) of H". Choose k so that £ € X;. Either ax = 1 or a; = 0. In the latter
case, let j > k and suppose a; < a;j41. Define m = Nj;; thus z,, = 1/j. However,
m = Njj > Nj, so |zm| < 1/j, a contradiction. Thus all a; = 0. Hence LPO obtains.

Now consider the converse. For any k > 1, Theorem 4.1 shows that the subspace
X*={z € H :|z,| < k when n < k, and z, = 0 when n > k}

is compact. Clearly, D" = {J;~; X*, and thus D" is o-compact. Applying LPO,

Example 2.7 shows that D" = H"; thus H" is o-compact. O

It follows that each space H" is classically o-compact, but not constructively. The

space H, however, is not classically o-compact. In fact, H is not ¢-compact in a
strong, affirmative sense:

5.9. Proposition. The space H is not o-compact, in the sense that if {X;}
is any sequence of compact subsets of H, then there exists a point y of H such that
o(y, Xx) > 0 for all k.

Proof. Using Theorem 3.11, choose, for each k, a positive integer Nj such that
S omen, [Zn| < 1/2F for all z € X;. We may assume that {N;} is increasing. Define
YN, = 1/25+1 and y, = 0 otherwise. Then y = (yn) is a point of H. For any k, and
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any z € Xi, we have Y " || < 3_5Ln, 19nl, and thus g(y, z) > 0. It follows from
Bishop’s Lemma that ¢(y, Xi) > 0. a
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