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Abstract

In the synthetic study of the real projective plane, harmonic conjugates have
an essential role, with applications to projectivities, involutions, and polarity.
The construction of a harmonic conjugate requires the selection of auxiliary
elements; it must be veri�ed, with an invariance theorem, that the result is
independent of the choice of these auxiliary elements. A constructive proof of
the invariance theorem is given here; the methods used follow principles put
forth by Errett Bishop.

1 Introduction

The classical theory of the real projective plane is highly nonconstructive; it relies
heavily, at nearly every turn, on the Law of Excluded Middle. For example, in classi-
cal treatises it is assumed that a given point either lies on a given line, or lies outside
the line, although this assumption is constructively invalid. This is demonstrated in
[7, Example 1.1], where it is shown that if taken in a strictly constructive sense, the
assumption would lead to a solution of the Goldbach problem, and to solutions of
many similar problems.

We follow the constructivist principles put forward by Errett Bishop [1]. Avoiding
the Law of Excluded Middle, constructive mathematics is a generalization of classical
mathematics, just as group theory, a generalization of abelian group theory, avoids
the commutative law. Thus every result and proof obtained constructively is also
classically valid. For the origins of modern constructivism, and the disengagement
of mathematics from formal logic, see Bishop's �Constructivist Manifesto�, Chapter
1 in [1] or [2]; further discussion and additional references will be found in [7].

A constructive real projective plane P is studied synthetically in [7]; topics in-
clude Desargues's Theorem, harmonic conjugates, projectivities, involutions, conics,
Pascal's Theorem, and polarity. An analytic model, P2(R), of the plane P is con-
structed in Euclidean space R3, and is used to prove the consistency of the axiom
system; thus the plane P is referred to as a �real projective plane�. Background infor-
mation, references to related work in constructive geometry, and further properties
of the plane P will be found in [7].

This paper is concerned with the Invariance Theorem for harmonic conjugates.
The construction of the harmonic conjugate of a point requires the selection of aux-
iliary elements; it must be demonstrated that the result is uniquely determined,
independent of the choice of these auxiliary elements.
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In an intuitionistic context, a harmonic conjugate construction was given by A.
Heyting [6, Section 7]. However, the proof of the invariance theorem given there
uses axioms for projective space; it does not apply to a projective plane constructed
using only axioms for a plane. Moreover, the proof is incomplete; it applies only to
points distinct from the base points. For applications of harmonic conjugates, e.g.,
to projectivities, involutions, and polarity, a complete proof is required.

A harmonic conjugate construction is given in [7], using only axioms for a plane;
it applies uniformly to all points on the base line. However, the proof given there
for the invariance theorem is incorrect; apart from the error, the proof is excessively
complicated, and objectionable on several counts. The discovery of the error is due
to Guillermo Calderón;1 he later obtained a proof of the invariance theorem, using
the method of [7], within a computer formalization of projective geometry [4].

Using a method which is simpler, more transparent, and more direct than the
method used in [7], we will give a constructive proof of the invariance theorem in
Section 3.

Following Bishop [1], we use no system of formal logic. Aside from ruling out use
of the Law of Excluded Middle, no special rules are required. The constructive logic
used here is known as informal intuitionistic logic; for a detailed treatment, see [3,
Section 1.3].

The divergence of constructive logic from classical logic appears most sharply in
the use of negation. The conditions P 6= Q, l 6= m, and P /∈ l do not have the
connotation of negation, as they do classically. These relations acquire constructive
properties determined by de�nitions and axioms, and become strong concepts; their
negations are P = Q, l = m, and P ∈ l, which are weaker concepts. Thus the role
of negation is in a sense reversed from the classical tradition.

The properties of the relations equality and inequality, as typically used in con-
structive studies, are seen most clearly in regard to real numbers. Certain concepts,
such as x = 0, are relatively weak compared to stronger concepts, such as x 6= 0.
The relation x 6= 0 requires the construction of an integer n such that 1/n < |x|; it
then follows that x = 0 is equivalent to ¬(x 6= 0). The statement �¬(x = 0) implies

x 6= 0� is constructively invalid. These facts motivate the selection of properties for
concepts in constructive geometry.

In geometry, a point lies outside a line, P /∈ l, is the stronger concept, while a

point lies on a line, P ∈ l, is the weaker. On the constructive real metric plane
R2, the geometrical and numerical concepts are directly related; P /∈ l if and only if
d(P, l) > 0. In constructing the projective plane P, we �rst specify conditions for the
equality and inequality relations on the family of points and on the family of lines,
and then say that the point P lies outside the line l, written P /∈ l, if P 6= Q for all
points Q that lie on l [7, De�nition 2.3]. The statement �If ¬(P /∈ l), then P ∈ l� is
taken as an axiom, re�ecting the constructive properties of the real numbers, while
the statement �If ¬(P ∈ l), then P /∈ l� is constructively invalid.

A characteristic feature of constructivist method is meticulous use of the connec-
tive �or�, the inclusive disjunction. To prove �A or B� constructively, it is required
that either we prove A, or we prove B; it is not su�cient to prove ¬(¬A and ¬B).
An essential property, constructively valid for the real numbers, and assumed here

1e-mail from Montevideo, Uruguay, March 16, 2017. The error in the proof of [7, Theorem
4.7] is in the use of the conclusion of step (7) beyond that step, whereas it is valid only in relation
to an assumption made in a previous step.
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both for points and for lines, is the cotransitivity property: �For any x, y, z, if x 6= y,
then either z 6= x or z 6= y�. Cotransitivity is very often the basis of a proof of an
alternation. Also assumed for both points and lines is the tightness property: �If

¬(x 6= y), then x = y�; this re�ects the property of real numbers noted above.

2 Preliminaries

Axioms, de�nitions, and results are given in [7] for the constructive real projective
plane P. One axiom has a preëminent standing in the axiom system; it is indispens-
able for virtually all constructive proofs involving the plane P.

Axiom C7. [7, Section 2] If l and m are distinct lines, and P is a point
such that P 6= l ·m, then either P /∈ l or P /∈ m.

This axiom may be viewed as a strongly-worded constructive form of the classical
statement that the point common to two distinct lines is unique. If the classical
statement has the form �If l and m are distinct lines, with a common point denoted

l · m, and a point P is such that P ∈ l and P ∈ m, then P = l · m�, then the
contrapositive of this statement, using classical logic, would be Axiom C7.

Heyting and van Dalen have used a variation of Axiom C7.2 Paraphrased to �t
the present context, this variation states: If l and m are distinct lines, and P is a

point such that P 6= l ·m, and P ∈ l, then P /∈ m. This is a seemingly weaker version
of Axiom C7; however, Axiom C7 is easily derived from the weaker version.3

The proof of the invariance theorem requires Desargues's Theorem and its con-
verse. The following de�nition includes explicit details which are required for con-
structive applications of Desargues's Theorem.

De�nition 2.1. Two triangles are distinct if corresponding vertices are distinct and
corresponding sides are distinct.4

Distinct triangles are said to be perspective from the center O if the lines joining
corresponding vertices are concurrent at the point O, and O lies outside each of the
six sides.

Distinct triangles are said to be perspective from the axis l if the points of inter-
section of corresponding sides are collinear on the line l, and each of the six vertices
lies outside l.

Desargues's Theorem is adopted as an axiom, and then used to prove the con-
verse.

Axiom D. Desargues's Theorem. If distinct triangles are perspective from a

center, then they are perspective from an axis.

Theorem 2.2. [7, Theorem 3.2] If distinct triangles are perspective from an axis,

then they are perspective from a center.

2Heyting's Axiom VI [6]; van Dalen's Lemma 3(f), obtained using his axiom Ax5 [5].
3Set Q = l ·m; by cotransitivity for lines, either PQ 6= l or PQ 6= m, and thus either P /∈ l or

P /∈ m. This answers a question raised at [7, page 26, Note 4].
4It is then easily shown that the lines joining corresponding vertices are distinct, and the points

of intersection of corresponding sides are distinct.
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Although harmonic conjugates are often de�ned classically using quadrangles or
triangles, we use a less problematic de�nition; it applies to every point on the line,
including the base points.

De�nition 2.3. [7, De�nition 4.1] Let A and B be any distinct points. Given any
point C on the line AB, select a line l that passes through C and is distinct from AB,
and select a point R that lies outside each of the lines AB and l. Set P = BR · l,
Q = AR · l, and S = AP · BQ. Pending veri�cation in Theorem 3.2, the point
D = AB · RS will be called the harmonic conjugate of C with respect to the points

A and B; we write D = h(A,B;C).

The following preliminary results will be required for the proof of the invariance
theorem.

Lemma 2.4. [7, Lemma 4.2] In De�nition 2.3 for the construction of a harmonic

conjugate,

(a) P 6= A, Q 6= B, P 6= Q.

(b) P /∈ AR, Q /∈ BR, A /∈ BR, B /∈ AR.

(c) AR 6= BR, AP 6= AR, AP 6= BR, BQ 6= BR, BQ 6= AR.

Lemma 2.5. [7, Lemma 4.4] In De�nition 2.3, h(A,B;A) = A and h(A,B;B) = B,

for any selection of the auxiliary elements l and R.

Lemma 2.6. [7, Lemma 4.5] In De�nition 2.3 for the construction of a harmonic

conjugate,

(a) If C 6= A, then Q /∈ AB, Q 6= S, S 6= A, and D 6= A.

(b) If C 6= B, then P /∈ AB, P 6= S, S 6= B, and D 6= B.

Lemma 2.7. [7, Lemma 4.6] In De�nition 2.3 for the construction of a harmonic

conjugate, let the point C be distinct from each base point; i.e., C 6= A and C 6= B.

Then the four points P,Q,R, S are distinct and lie outside the base line AB, and

each subset of three points is noncollinear.
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3 The invariance theorem

In proving the invariance theorem, we consider �rst a situation in which the con�g-
uration allows application of Desargues's Theorem and its converse.

Lemma 3.1. In De�nition 2.3, let auxiliary element selections (l, R) and (l′, R′) be
used to construct harmonic conjugates D and D′ of the point C. If the point C is

distinct from each base point; i.e., C 6= A and C 6= B, and

AR′ 6= AR, BR′ 6= BR, and l′ 6= l, l′ 6= CP1, l
′ 6= CQ1,

where P1 = AP ·BR′ and Q1 = BQ ·AR′, then D = D′.

Proof. We �rst check the validity of the conditions. Since C 6= A and C 6= B,
the results of Lemma 2.7 will apply to the points P,Q,R, S, and also to the points
P ′, Q′, R′, S′. Since R′ /∈ AB, we have AB 6= BR′. Since A 6= B = AB · BR′,
it follows from Axiom C7 that A /∈ BR′, and thus AP 6= BR′. By symmetry,
BQ 6= AR′. Thus the de�nitions of P1 and Q1 are valid. Also, we see that A 6= P1

and B 6= Q1. Since P /∈ AB, we have AB 6= AP . Since P1 6= A = AB · AP , it
follows that P1 /∈ AB, and thus P1 6= C. Similarly, Q1 6= C. This shows that the
conditions speci�ed for l′ are meaningful.

(1) Suppose that D 6= D′.
(2) Since R 6= A = AR · AR′, it follows that R /∈ AR′, and thus R 6= R′. From

the conditions AR′ 6= AR and BR′ 6= BR, we see that QR 6= Q′R′ and PR 6= P ′R′.
By Lemma 2.4(a), we see that l = PQ and l′ = P ′Q′; thus PQ 6= P ′Q′. Since
D 6= D′ = AB · R′S′, it follows that D /∈ R′S′, and thus RS 6= R′S′. Since P ′ 6=
C = l′ ·CP1, it follows that P

′ /∈ CP1, and thus P ′ 6= P1. Since P
′ 6= P1 = AP ·BR′,

it follows that P ′ /∈ AP , and thus P 6= P ′. Also, AP 6= AP ′; i.e., PS 6= P ′S′.5 By
symmetry, we have Q′ /∈ BQ, Q 6= Q′, and QS 6= Q′S′.6 Since S 6= A = AP · AP ′,
it follows that S /∈ AP ′, and thus S 6= S′.

The above, together with Lemma 2.7, shows that the quadrangles PQRS and
P ′Q′R′S′ have distinct corresponding vertices and distinct corresponding sides, that
the corresponding contained triangles are distinct, and that each of the eight vertices
lies outside the line AB.

(3) The triangles PQR and P ′Q′R′ have corresponding sides that meet at points
QR ·Q′R′ = A, PR ·P ′R′ = B, and PQ ·P ′Q′ = l · l′ = C; thus they are perspective
from the axis AB. By the converse to Desargues's Theorem, the triangles are per-
spective from a center; setting O = PP ′ · QQ′, it follows that O ∈ RR′. This also
shows that O lies outside each of the six sides of these triangles, and that O 6= R
and O 6= R′.

(4) The triangles PQS and P ′Q′S′ are also perspective from the axis AB; thus
they are perspective from the center O, and it follows that O ∈ SS′. Also, O lies
outside each of the six sides of these triangles, O 6= S, and O 6= S′.

(5) To apply Desargues's Theorem to the triangles PRS and P ′R′S′, all the
required distinctness conditions have been veri�ed above, except for one; it remains
to be shown that the point O lies outside each of the sides RS and R′S′.

5As for the necessity of taking the points P1, Q1 into account, note that if the line l′ were to
pass through the point P1, then we would have PS = P ′S′. Similarly, if l′ were to pass through
Q1, then we would have QS = Q′S′. The proof in [7] does not take these points into account.

6Ibid.
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It was shown at (2) that RS 6= R′S′; de�ne E = RS · R′S′. By cotransitivity,
either E 6= S or E 6= R. In the �rst case, since S 6= E = RS · R′S′, it follows that
S /∈ R′S′, and thus SS′ 6= R′S′. Since O 6= S′ = SS′ ·R′S′, it follows that O /∈ R′S′.
In the second case, since R 6= E = RS · R′S′, it follows that R /∈ R′S′, and thus
RR′ 6= R′S′. Since O 6= R′ = RR′ ·R′S′, it follows that O /∈ R′S′. Thus in each case
we obtain O /∈ R′S′. Similarly, either E 6= S′ or E 6= R′, and by symmetry we �nd
that O /∈ RS.

(6) Now the triangles PRS and P ′R′S′ are perspective from the center O. By
Desargues's Theorem, these triangles are perspective from the axis (PS ·P ′S′)(PR ·
P ′R′) = AB, and thus RS · R′S′ ∈ AB. Hence E = D and E = D′, contradicting
our assumption at (1); thus we have ¬(D 6= D′), and it follows from the tightness
property for points that D = D′.

Theorem 3.2. Invariance Theorem. Let the projective plane P be such that at

least eight distinct lines7 pass through any given point. In De�nition 2.3, let auxiliary

element selections (l, R) and (l′, R′) be used to construct harmonic conjugates D and

D′ of the point C. Then D = D′; the harmonic conjugate construction is independent

of the choice of auxiliary elements.

Proof. We construct a third selection of auxiliary elements, and then utilize two
applications of Lemma 3.1.

(1) Suppose that D 6= D′.
(2) By cotransitivity, either A 6= D or A 6= D′; by symmetry, it will su�ce to

consider the �rst case. Since A 6= D = AB · RS, it follows from Axiom C7 that
A /∈ RS, and thus A 6= S. Since A 6= S = AP · BQ, it follows that A /∈ BQ, and
thus A 6= Q. Since A 6= Q = AR · l, it follows that A /∈ l, and thus A 6= C. Similarly,
B 6= C. Thus the point C is distinct from each base point.

(3) Select a line m through the point A such that m 6= AB, m 6= AR, and
m 6= AR′. Select a line n through the point B such that n 6= AB, n 6= BR, and
n 6= BR′. Since A 6= B = AB · n, it follows that A /∈ n, and thus m 6= n. De�ne
R′′ = m · n; since A /∈ n, we have A 6= R′′. Since R′′ 6= A = AB ·m, it follows that
R′′ /∈ AB.

Since AR′′ = m, we have AR′′ 6= AR, and AR′′ 6= AR′; by symmetry, BR′′ 6= BR
and BR′′ 6= BR′. As veri�ed in Lemma 3.1, we may de�ne the points P1 = AP ·BR′′,
Q1 = BQ ·AR′′, P2 = AP ′ ·BR′′, Q2 = BQ′ ·AR′′, and note that these four points
are distinct from the point C.

Now select a line l′′ through the point C such that l′′ 6= CR′′; l′′ 6= l, l′′ 6= CP1,
l′′ 6= CQ1; and l′′ 6= l′, l′′ 6= CP2, l

′′ 6= CQ2. Since R′′ 6= C = CR′′ · l′′, it follows
that R′′ /∈ l′′.

(4) The auxiliary element selection (l′′, R′′) satis�es the conditions for De�nition
2.3, resulting in a harmonic conjugate D′′. This third selection (l′′, R′′) also satis�es
the conditions of Lemma 3.1, relating it to each of the selections (l, R) and (l′, R′).
Two applications of Lemma 3.1 now show that D′′ = D and D′′ = D′, contradicting
our assumption at (1); thus we have ¬(D 6= D′), and it follows that D = D′.

7In [7, Section 5], Axiom E stipulates that at least six distinct lines pass through any given
point.
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The harmonic conjugates constructed here can now be related to the traditional
quadrangle con�guration.8

Corollary 3.3. [7, Corollary 4.8] Let A,B,C,D be collinear points, with A 6= B,

and C distinct from both points A and B. Then D = h(A,B;C) if and only if there

exists a quadrangle PQRS, with vertices outside the line AB, such that A = PS ·QR,

B = PR ·QS, C ∈ PQ, and D ∈ RS.

Additional results concerning constructive harmonic conjugates, including appli-
cations to projectivities, involutions, and polarity, will be found in [7].
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