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METRIZATION OF THE ONE-POINT COMPACTIFICATION
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(Communicated by James E. West)

Abstract. A new, more widely applicable, constructive definition of locally

compact metric space is given, and a metric one-point compactification is con-

structed. Classically, this provides a simpler, more direct, construction of a

metric on the one-point compactification of a separable locally compact metric

1. Introduction

In the constructive theory of metric spaces as developed by Errett Bishop [1],

the concept of locally compact space is unique. Virtually all other metric space

concepts were successfully constructivized by a judicious choice of definition

from among a variety of classically equivalent conditions. In this case, however,

the definition differed from the classical definition. Bishop's locally compact

spaces are those in which every bounded subset is contained in a compact subset.

This allows the construction of a one-point compactification, and includes many

traditional locally compact spaces, such as the Euclidean spaces. However, other

spaces, such as open spheres in Euclidean space, are included only if given a

new metric. Here a new definition is given which resolves this difficulty.

A locally compact space should have a one-point compactification. In

Bishop's constructive development of analysis, metric spaces are most useful, so

this one-point compactification should be metrizable. Under the traditional def-

inition, which merely requires that every point have a compact neighborhood,

there are locally compact metric spaces whose one-point compactifications are

not metrizable; thus this definition cannot be used in a constructive develop-

ment. Metrizability of the one-point compactification requires that the point

at infinity be the intersection of countably many neighborhoods, so the space

must be tr-compact. Thus cr-compactness is used here for the definition of

locally compact space, with the addition of a strong monotonicity condition

on the sequence of compact subsets. The condition ensures that each point

has a compact neighborhood, and allows the construction of a metric one-point
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compactification. Classically, for locally compact metric spaces, the definition

is equivalent to separability. Appendix A in [1] discusses the appropriateness

of the metrizability and separability restrictions, from the constructive point of

view.

The property of local compactness used here is hereditary for certain open

subsets, and invariant under certain continuous mappings. Among the locally

compact spaces will be the Euclidean spaces, open spheres in Euclidean space,

metric complements of located sets in locally compact spaces, and spaces sat-

isfying Bishop's constructive definition, all with no change of metric. Finally,

the definition is characterizing; any metric space which has a metric one-point

compactification is locally compact.

These results constitute a constructivization of the classical theorem which

characterizes locally compact spaces X with metrizable one-point compactifica-

tions X as those having a countable base [4; XI, 8.6]. While the classical proof

uses standard metrization methods, embedding I ina product of intervals,

here we give a simple and direct definition of a metric for X, based on a given

metric for X.

2. Locally compact spaces

A metric space (X ,p) is compact if it is totally bounded and complete. A

subset F of a metric space X is located if the distance p(x,F) to the subset

may be measured from any point x in X . Compact subsets are always located.

The metric complement X - F of a located set F is the set of points situated

at a positive distance from F . If X is compact, and g : X —* R is uniformly

continuous, then the set {x G X: g(x) < r} is void or compact for all but

countably many real numbers r. These and other constructive properties of

metric spaces are developed in [1] or [2].

For any set F in a metric space X, and any r > 0, we write F(r) = {x G

X: p(x,y) < r for some y G F). When F is located, then F(r) — {x G

X: p(x,F) < r} . If F(r) c G for some r > 0, we will say that G is a

uniform neighborhood of F . Classically, any neighborhood of a compact set is

a uniform neighborhood.

Definitions. A metric space X is locally compact if it is a countable union

U^, Hk of compact subsets, where each set Hk+X is a uniform neighborhood

of ~Hk .

A bijection cp : X —► Y between locally compact metric spaces is a homeo-

morphism if both cp and its inverse cp*~ are uniformly continuous on compact

subsets.

Theorem 1. The following metric spaces are locally compact:

(a) Any compact space.

(b) The Euclidean spaces R".

(c) Open spheres in R".

(d) Any nonvoid metric complement of a located set in a locally compact space.
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(e) Any nonvoid space in which any bounded subset is contained in a compact

subset.

Proof. It suffices to prove (d) and (e). Let X = Y - F be the nonvoid metric

complement of the located set F in the locally compact space Y = (J^Li Hk ,

where each set Hk is compact, HJcJ c Hk+X , and {cj decreases and tends to

zero. Construct a decreasing sequence {dj so that 0 < dk < ck and Gk = {x G

Hk: p(x,F) > dk} is compact. Then X = (J¿L, Gk , and GJdk-dk+x) c Gk+l
for all Ac.

Under the condition of (e), fix a point x0G X. If suitable compact sets H¡

have been constructed for all i < k, construct a sphere of radius > k about

x0 which contains Hk_x(l), and construct a compact set Hk containing this

sphere.

3. The one-point compactification

Definitions. Let X be a locally compact space. Adjoin a point x, to X,

obtaining a set Xx with X as a subset. We will construct a real-valued function

h on X, and will then define

d(x ,y) = p(x ,y) A(h(x) + h(y)),       (x ,y G X)

(1) d(x,xx) = h(x),       (xgX)

d(xx ,xx) = 0.

It will be shown that d is a metric on Xx , under which Xx is totally bounded.

The completion (X, p) of (Xx,d) will be called the one-point compactification

of (X, p). The mapping /: X —^ X is the restriction to X of the usual inclu-

sion map i, : Xx —► X of a space into its completion. The image of xx in X

is denoted oo and called the point at infinity.

Theorem 2. Every locally compact metric space (X, p) has a metric one-point

compactification (X ,p). The mapping i: X —► X is a uniformly continuous

injection, and a homeomorphism between X and X - {oo}.

Proof. For each k, construct ck > 0 so that HJcJ c Hk+l and {cj de-

creases and tends to zero. Define

oo

(2) h(x)=\J(ck-p(x,Hk)),       (xgX).
k=\

For any given point x, the indicated supremum is equal to the maximum of

finitely many terms. Thus « is well-defined, with 0 < « < cx . It is clear that

h(x) > c,       when x G H, ,(3) * k

h(x) < ck       when x G X - Hk .

We now show that

(4) \h(x)-h(y)\<p(x,y),       (x,y G X).
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Given any e > 0, choose an integer k such that ck - p(x,HJ > h(x) - e.

Then ck - p(y ,HJ < h(y), and it follows that h(x) - h(y) < ck - p(x,HJ +

e-ck + p(y,Hk) < p(x,y) + e.

Define the function d as in (1). To show that d is a metric on Xx, first note

that if x ,y G Xx and x / y , then d(x,y) > 0. Now let x,y, z G Xx . To

show that d(x ,y) < d(x ,z) + d(z ,y), first consider the case in which exactly

one of these three points is x, . If x = x, , then the triangle inequality reads

h(y) < h(z) + d(z,y), or h(y) - h(z) < d(z,y). Since h(y) - h(z) < p(z,y)

by (4), and also h(y) - h(z) < h(y) + h(z), this follows from (1). The case

y = x, is similar. If z = xx , then d(x,y) < h(x) + h(y) = d(x, z) + d(z ,y).

Now let x, y, z G X, and let e > 0. Either ( 1 ) p(x, z) < d(x, z) + e/2 or

(2) h(x) + h(z) < d(x,z) + e/2. Similarly, either (a) p(z,y) < d(z,y) + e/2

or (b) h(z) + h(y) < d(z ,y) + e/2 . In case (la), we have d(x ,y) < p(x ,y) <

p(x ,z) + p(z ,y) < d(x ,z) + d(z ,y) + e . In case (lb) it follows from (4) that

d(x,y) < h(x) + h(y) < p(x, z) + h(z) + h(y) < d(x,z) + d(z,y) + e, and

case (2a) is similar. Finally, in case (2b), d(x,y) < h(x) + h(y) < d(x,z) +

d(z,y) + e.

To show that Xx is totally bounded, let e > 0 and choose k so that ck < e .

Construct a finite e approximation A to Hk+X and define B = Au{xx}. For

any point x G X, either x G Hk+X or x e X - Hk . In the first case, there is

a point a G A such that p(x,a) < e. In the second case, d(x,xx) = h(x) <

ck < e . It follows that B is a finite s approximation to (Xx ,d).

Thus X is compact. Since « > 0 on X, the mapping /' is an injection.

Since d < p , the mapping i is uniformly continuous. It follows from ( 1 ) that

(5) ¿(/(x),oo) = «(x),        (xgX).

To show that i(X) = X - {oo}, first note that one inclusion follows from

(5). Now let y = {yj be a point of X with p(y ,oo) > 0, and choose k so

that p(y ,oo) > ck . Then p(ix(yj ,oo) > ck eventually. Thus we may assume

that {yj lies in X, so h(yj > ck and yn G Hk for all «. Since {yj is

d-Cauchy, and « is bounded away from zero on {y }, it follows from ( 1 ) that

{yj is also /9-Cauchy. Thus there is a point x in Hk such that yn —> x with

respect to p , and it follows that y = lim  i(yj — i(x).

Now let K be a compact subset of i(X). Using [5, Lemma 5.3], construct

a point y in K such that p(oo,y) < 2p(oo,K). Since y G X - {oo}, this,

together with (5), shows that « is bounded below on i^(K). Hence f'*~ is

uniformly continuous on K .

Remarks, (i) The definition of « may be illustrated by the example in which

Hk = [0,k] and ck = l/k.

(ii) If X is not compact and, moreover, each metric complement X — Hk is

nonvoid, then X is dense in X . If X is compact and, moreover, X = Hk for

some k , then oo is an isolated point of X .

(iii) For any compact subset K of X, the following are equivalent:



METRIZATION OF THE ONE-POINT COMPACTIFICATION 1115

(a) K c Hk for some integer k .

(b) p(oo,i(K))>0.

(c) The image i(K) under the (uniformly continuous) mapping i is

compact.

(d) The (positive, uniformly continuous) function h has a positive in-

fimum on K.

For a compact subset K of the open disk, the function ; -* p(e n",K)

relates these conditions with the question of whether a positive, uniformly con-

tinuous function on the closed interval has a positive infimum. This is a funda-

mental, constructively indeterminate, problem; see [1, p. 151] and [3, Ch. 6].

4. Invariance and characterization

We state the invariance theorem in a form general enough to include the

canonical mapping of the plane onto an open disk.

Theorem 3. Let X be a locally compact metric space, and let the mapping

cp: X —► Y be a bijection onto a metric space Y, such that cp is uniformly

continuous on compact subsets of X, and cp^~ is uniformly continuous on some

uniform neighborhood of cp(K), for each compact subset K of X. Then Y is

locally compact.

Proof. Let X = (jkHk , where each Hk+X is a compact uniform neighborhood

of Hk . Define Gk = cp(HJ for all k ; thus Y — \Jk Gk . Since Hk is compact,

cp is a metric equivalence on Hk ; thus Gk is compact. If H Je) c Hk+X , and

ô = co(e) A r, where co is a modulus of continuity for cp*~ on GJr), then

GJÔ)cGk+x.

Corollary. Any metric space having a metric one-point compactification with the

properties in Theorem 2 is locally compact.
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