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Abstract
Although classically every open subspace of a locally compact space is also
locally compact, constructively this is not generall.v true. This pof., provicles
a locally compact remetrization for an open set in a compact metric space ancl
constructs a one-point compactification.
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t. Introduction

In the constructive development of analysis, locally compact metric spaces play an im-portant role. For example, constructive measure theory ([1], [2]) i, i".,r*loi"d rnainlyin this setting. A special limited form of local compu.in*r, is requirecl for these pur-
poses; a metric space is said tobe locally compaclif every bouncled subset is contaile<I
in a compact subset-. (A more general forrn ol constructlve local compactness may 5e
found in [7], but will not be considered here.)

Under this definition many spaces, including a,n open clisk in the pla1e, must be
remetrized in order to become locally courpa,ct. A general methocl is clesira.ble. A
located subset F of a metric space X is a set for wlich tlie clistance p(;,F) to a1ypoint c of X exists constructively. The melric complenlenlX- F of F is the su6spa,ce
of X consisting of all points situatecl a,t a positiv" .lirtun." from p. (These ancl other
basic constructive concepts may be founcl in [1] or [2].) For example, the opel uuit
disk is the metric complementU - X - F of the unii circle F in the conpact clisk f .

The class of metric complements may be considered to be the open sets of construct,ive
significance, and the results here are restricted to these. We give a co'st,ructio' to
remetrize the metric complemetrt U of any locatecl set F in a compa,ct lretric space
so that U is locally compact, ancl we show that F may be collapserl to a point *,, in
such a way that the resulting space ,Yp yields u on"-ptint compactification of [r', in
which c.r is the point at infinity.

2. The collapsing construction

Classically, any set may be used in this coustructiou, but for constructive pul.l.)oses a
located set is required. This coustruction has also been usecl previousl;', for different
purposes see [3,4].
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Theorem 1. Let X be a metric space with metric p, and, let F be a localed subsel

of X. Then

d(r,y) = p(r,y) A [p(c, P) + o(u, f)J

ilefines a pseudometric on X with the following properties:

(u) ffr anilybothlieinthe closureT of F,lhend(r,y)=0'
(b) I/ y €T, then for any r € X, d(t,v) - e@, F)'

Proof . Let x,a,z €x and let e ) 0. Frorn the definition of d(t,z), either

(1) s(x, z) I d(r, z) + e 12,
OI

(2) p(x, F) * Q(2, F) < d(r, z) + e 12.

Similarly, either

(u) s(z,y) 1d(z,y) + €12,

or

(b) s(r, F) + a(y, F) < d(z,v) + €12.

In case (1a) we have

d(r,y) 1 p(*,0 S p@, z) + oQ,a) < d(r, z) + d(z,v) + e'

In case (1b) we have

d(r,a)< Q(r,r)+ o(a,F) < p(r'z)+ e(z,F)+ efu'F)
I d,(x, z) + d(z,Y) + e,

and case (2a) is similar. Finally, in case (2b),

d(r,a)3 p(x,.r')+o(v,F) S o(s, F)*Zs(z,F)+ efu,F)
I d(x,z) + d(z,y) + €.

It follows that d(r, y) < d(x, z) + d(z,g). The properties listed follow easily'

Definition. The set consisting of the elements of X with equality relation

defined by c I y lf dt(r,y) = 0, will [e called tl-re collapsed set of x by F, denoted

by Xr. The set Xr with ihe metric d will be called tb,e collapsed space of X by F'

Theorem 2. Let (X,p) be a melric space, let F be a located subsel of X, let

Xo=X-F,andlelP€F.
(a) The natural mapping i : x ----. xy is uniformly continuous

(b) Restricted to Xs, the mapping i is an injection inlo Xp'

(c) z(xs) - xp - tp]
(d) 

"[e 
inaersej : i(X6) 

- 
Xo is uniformly conlinuous on each comltacl subsel

of i(X6).
(") 71 the space X is complete, and if V,A) is the cornpletion o/ (Xr',d\, then

xp - {p} = v - {p}.
proof . (u), (b) and (c) follow clirectly from the clefinition of the tnet'ric d and

Theorem l.
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(d). Let Ii be a compact subset of Xr - {p}. tlsing [6, Lernma 5.i3], constntct a

point y in I{ so that d(p,y) < 2d(p,/i). This shows that .Ii is bounded away frotn p
with respect to d, and thus also bounded away from F with respect to 4r. It follows
that j is uniformly continuous on Ii.

(e). Let y e\'- {p}. Then i(y,p) > 0,so there exists a sequence-i",} irt fp.
bounded away from p with respect to d, with rn - y with respect to d. Since {r'}
is Cauchy in d, and bounded away from F with respect to pr, it is Cauchy in p. Thus
there exists r € X such that rn + r: with respect to p. It follows that .r',. .- rr with
respect to d also, and thus y - r.

3. Remetrization of metric courplements

The following generalizes a construction due to D. Buocos [2].
Theorern 3. LeI Xo be the metric cotttqtlemenl of a localed set F in o contltncl

melric space (X,p), Iet Xs be nonuoid, art.d fir a poirtt u in F. Then Xo is locally
compacl in the melric

so(r,a) = {p(r,s) A [p(r, F) + ofu,r)]] + llls@, F) - Ilsfu, Fll,

and the completionY of Xp is a one-ltoinl compactification of (Xo,p0). u,ilh Ttoinl at

inf,nity u.
Proof . Since X is totally bounded, so is (Xr,,d), ancl thus (\',ci! is courpact'.

Proposition a.6.tof [2] applies directly to ]'- {r,'}; it is locally courpa,ct, relative to
the new metric d6, arld )' is a one-point cornpactification, lvith point at infinity ";.
Since X is complete,Y - {cu} is merely Xp - {cu}, which is thus locally compact itr
the metric

ds(r,v): d(*,a) +lrld'(r,u) - llrl(v,u)l'
The correspondence between Xo and Xp - {c.,} induces the metri" 00, with respect

to which X6 is locally cotlpact, with l'' a oue-point coutpactification.

4. Exarnples

a) Let X be the closed unit interval [0, 1], and let F be the set {0, 1} of endpoints.
Then Xp may be thought of as a loop. The open iuterval Xo = (0, 1) is locally
compact in the metric eo and the circle is a one-point cornpactification. Horvever, t'he

loop Xp itself is constructively only a zoncomplete sul>space of the circle. There a,re

Cauchy sequences on the loop which have no limit l>ecause we cauuot tell orl which

side of the joint they cluster. Points in Xp are born of points in [0, 1], attcl retrtembet
their parentage.

b) On the real line IR, [5] characterizes the metric complement LI of a, locatecl set

F as a countable union of disjoint open intervals. !Vhe11 [/ is bouncled, it is locally
compact under the metric p6. The distances g(.x,F) used in calculatirtg p6 ale simply
distances to the endpoints of the intervals. The one-point compactification is formecl

by identifying the points of F, and forming the courpletion. Wheu [i resolves iut,o

two finite open intervals, IRp may be realized a,s a curve in the form of the sy'mbol oc'.

With rnore components, there a,re more loops; the one-poiut compactification is tlte
completion, and the point at infinity is the junction.
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