Mathematical Logic Quarterly © Johann Ambrosius Barth 1993

Open Subspaces of Locally Compact Metric Spaces

Mark Mandelkern

Department of Mathematics, New Mexico State University Las Cruces, NM 88003, U.S.A.

Abstract

Although classically every open subspace of a locally compact space is also locally compact, constructively this is not generally true. This paper provides a locally compact remetrization for an open set in a compact metric space and constructs a one-point compactification. MSC: 54D45, 03F60, 03F65.

Keywords: Locally compact, Metrization, Constructive mathematics.

1. Introduction

In the constructive development of analysis, locally compact metric spaces play an important role. For example, constructive measure theory ([1], [2]) is developed mainly in this setting. A special limited form of local compactness is required for these purposes; a metric space is said to be *locally compact* if every bounded subset is contained in a compact subset. (A more general form of constructive local compactness may be found in [7], but will not be considered here.)

Under this definition many spaces, including an open disk in the plane, must be remetrized in order to become locally compact. A general method is desirable. A located subset F of a metric space X is a set for which the distance $\varrho(x, F)$ to any point x of X exists constructively. The metric complement X - F of F is the subspace of X consisting of all points situated at a positive distance from F. (These and other basic constructive concepts may be found in [1] or [2].) For example, the open unit disk is the metric complement U = X - F of the unit circle F in the compact disk X. The class of metric complements may be considered to be the open sets of constructive significance, and the results here are restricted to these. We give a construction to remetrize the metric complement U of any located set F in a compact metric space so that U is locally compact, and we show that F may be collapsed to a point ω in such a way that the resulting space X_F yields a one-point compactification of U, in which ω is the point at infinity.

2. The collapsing construction

Classically, any set may be used in this construction, but for constructive purposes a located set is required. This construction has also been used previously, for different purposes see [3, 4].

Theorem 1. Let X be a metric space with metric ϱ , and let F be a located subset of X. Then

 $d(x,y) \equiv \varrho(x,y) \wedge [\varrho(x,F) + \varrho(y,F)]$

defines a pseudometric on X with the following properties:

- (a) If x and y both lie in the closure \overline{F} of F, then d(x, y) = 0.
- (b) If $y \in \overline{F}$, then for any $x \in X$, $d(x, y) = \varrho(x, F)$.

Proof. Let $x, y, z \in X$ and let $\varepsilon > 0$. From the definition of d(x, z), either

(1)
$$\varrho(x,z) < d(x,z) + \varepsilon/2$$
,
or

(2)
$$\varrho(x,F) + \varrho(z,F) < d(x,z) + \varepsilon/2.$$

Similarly, either

(a) $\varrho(z,y) < d(z,y) + \varepsilon/2,$

or

(b)
$$\varrho(z,F) + \varrho(y,F) < d(z,y) + \varepsilon/2.$$

In case (1a) we have

$$d(x,y) < \varrho(x,y) \le \varrho(x,z) + \varrho(z,y) < d(x,z) + d(z,y) + \varepsilon.$$

In case (1b) we have

$$d(x, y) \le \varrho(x, F) + \varrho(y, F) \le \varrho(x, z) + \varrho(z, F) + \varrho(y, F)$$

$$< d(x, z) + d(z, y) + \varepsilon,$$

and case (2a) is similar. Finally, in case (2b),

$$d(x, y) \le \varrho(x, F) + \varrho(y, F) \le \varrho(x, F) + 2\varrho(z, F) + \varrho(y, F) < d(x, z) + d(z, y) + \varepsilon.$$

It follows that $d(x, y) \leq d(x, z) + d(z, y)$. The properties listed follow easily.

Definition. The set consisting of the elements of X with equality relation defined by $x \approx y$ if d(x, y) = 0, will be called the *collapsed set* of X by F, denoted by X_F . The set X_F with the metric d will be called the *collapsed space* of X by F.

Theorem 2. Let (X, ϱ) be a metric space, let F be a located subset of X, let $X_0 \equiv X - F$, and let $p \in F$.

(a) The natural mapping $i: X \longrightarrow X_F$ is uniformly continuous.

(b) Restricted to X_0 , the mapping i is an injection into X_F .

(c) $i(X_0) = X_F - \{p\}.$

(d) The inverse $j : i(X_0) \longrightarrow X_0$ is uniformly continuous on each compact subset of $i(X_0)$.

(e) If the space X is complete, and if (Y, \tilde{d}) is the completion of (X_F, d) , then $X_F - \{p\} = Y - \{p\}$.

Proof. (a), (b) and (c) follow directly from the definition of the metric d and Theorem 1.

(d). Let K be a compact subset of $X_F - \{p\}$. Using [6, Lemma 5.3], construct a point y in K so that $d(p, y) \leq 2d(p, K)$. This shows that K is bounded away from p with respect to d, and thus also bounded away from F with respect to ρ . It follows that j is uniformly continuous on K.

(e). Let $y \in Y - \{p\}$. Then $\tilde{d}(y, p) > 0$, so there exists a sequence $\{x_n\}$ in X_F , bounded away from p with respect to d, with $x_n \to y$ with respect to \tilde{d} . Since $\{x_n\}$ is Cauchy in d, and bounded away from F with respect to ρ , it is Cauchy in ρ . Thus there exists $x \in X$ such that $x_n \to x$ with respect to ρ . It follows that $x_n \to x$ with respect to d also, and thus y = x.

3. Remetrization of metric complements

The following generalizes a construction due to D. BRIDGES [2].

Theorem 3. Let X_0 be the metric complement of a located set F in a compact metric space (X, ϱ) , let X_0 be nonvoid, and fix a point ω in F. Then X_0 is locally compact in the metric

$$\varrho_0(x,y) \equiv \{\varrho(x,y) \land [\varrho(x,F) + \varrho(y,F)]\} + |1/\varrho(x,F) - 1/\varrho(y,F)|,$$

and the completion Y of X_F is a one-point compactification of (X_0, ϱ_0) , with point at infinity ω .

Proof. Since X is totally bounded, so is (X_F, d) , and thus (Y, \tilde{d}) is compact. Proposition 4.6.9 of [2] applies directly to $Y - \{\omega\}$; it is locally compact relative to the new metric \tilde{d}_0 , and Y is a one-point compactification, with point at infinity ω . Since X is complete, $Y - \{\omega\}$ is merely $X_F - \{\omega\}$, which is thus locally compact in the metric

$$d_0(x,y) \equiv d(x,y) + \left| \frac{1}{d(x,\omega)} - \frac{1}{d(y,\omega)} \right|.$$

The correspondence between X_0 and $X_F - \{\omega\}$ induces the metric ϱ_0 , with respect to which X_0 is locally compact, with Y a one-point compactification.

4. Examples

a) Let X be the closed unit interval [0, 1], and let F be the set $\{0, 1\}$ of endpoints. Then X_F may be thought of as a loop. The open interval $X_0 = (0, 1)$ is locally compact in the metric ϱ_0 and the circle is a one-point compactification. However, the loop X_F itself is constructively only a *non*complete subspace of the circle. There are Cauchy sequences on the loop which have no limit because we cannot tell on which side of the joint they cluster. Points in X_F are born of points in [0, 1], and remember their parentage.

b) On the real line \mathbb{R} , [5] characterizes the metric complement U of a located set F as a countable union of disjoint open intervals. When U is bounded, it is locally compact under the metric ϱ_0 . The distances $\varrho(x, F)$ used in calculating ϱ_0 are simply distances to the endpoints of the intervals. The one-point compactification is formed by identifying the points of F, and forming the completion. When U resolves into two finite open intervals, \mathbb{R}_F may be realized as a curve in the form of the symbol ∞ . With more components, there are more loops; the one-point compactification is the completion, and the point at infinity is the junction.

References

- [1] BISHOP, E., Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.
- [2] BISHOP, E., and D. BRIDGES, Constructive Analysis. Springer-Verlag, Berlin-Heidelberg-New York, 1985.
- [3] VAN DOUWEN, E. K., The small inductive dimension can be raised by the adjunction of a single point. Indag. Math. 35 (1973), 434-442.
- [4] KURATOWSKI, K., Topologie I, 4th ed. Warsaw, 1958.
- [5] MANDELKERN, M., Located sets on the line. Pacific J. Math. 95 (1981), 401-409.
- [6] MANDELKERN, M., Constructive Continuity. Memoirs Amer. Math. Soc. 277 (1983).
- [7] MANDELKERN, M., Metrization of the one-point compactification. Proc. Amer. Math. Soc. 107 (1989), 1111-1115.

(Received: June 5, 1991)