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Abstract
Although classically every open subspace of a locally compact space is also
locally compact, constructively this is not generally true. This paper provides
a locally compact remetrization for an open set in a compact metric space and
constructs a one-point compactification.
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1. Introduction

In the constructive development of analysis, locally compact metric spaces play an im-
portant role. For example, constructive measure theory ([1], [2]) is developed mainly
in this setting. A special limited form of local compactness is required for these pur-
poses; a metric space is said to be locally compact if every bounded subset is contained
in a compact subset. (A more general form of constructive local compactness may be
found in [7], but will not be considered here.)

Under this definition many spaces, including an open disk in the plane, must be
remetrized in order to become locally compact. A general method is desirable. A
located subset F of a metric space X 1s a set for which the distance o(x, F ) to any
point z of X exists constructively. The metric complement X — F of F is the subspace
of X consisting of all points situated at a positive distance from F. (These and other
basic constructive concepts may be found in [1] or [2].) For example, the open unit
disk is the metric complement U = X — F of the unit circle F in the compact disk Y.
The class of metric complements may be considered to be the open sets of constructive
significance, and the results here are restricted to these. We give a construction to
remetrize the metric complement U of any located set F in a compact metric space
so that U is locally compact, and we show that F may be collapsed to a point w in
such a way that the resulting space Xp ylelds a one-point compactification of {7, in
which w is the point at infinity.

2. The collapsing construction

Classically, any set may be used in this construction, but for constructive purposes a
located set is required. This construction has also been used previously, for different
purposes see [3, 4].
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Theorem 1. Let X be a metric space with metric o, and let F be a located subsel
of X. Then

d(z,y) = o(z,y) Ale(z, F) + e(y, F)]
defines a pseudometric on X with the following properties:
(a) If x and y both lie in the closure F of F, then d(z,y) = 0.
(b) Ify € F, then for any z € X, d(z,y) = o(z, F).
Proof. Let z,y,z € X and let ¢ > 0. From the definition of d(z, z), either

(1) o(z,z) < d(z,z) +¢/2,

(2) o(z, F)+ o(z,F) < d(z,2) +¢/2.
Similarly, either

(a) o(z,y) < d(z,y) +€/2,

(b) o(z, F) + o(y, F) < d(z,y) +¢/2.

In case (1a) we have

d(z,y) < o(z,y) < e(x,2) + o(z,y) < d(z,2) +d(z,y) + &
In case (1b) we have
d(z,y) < o(z, F) + o(y, F) < oz, 2) + e(z, F) + oy, F)
<d(z,2) +d(z,y) +¢,
and case (2a) is similar. Finally, in case (2b),
d(z,y) < o(z, F) + o(y, F) < oz, F) + 20(z, F) + 2(y, F)
<d(z,2)+d(z,y) +e¢.
It follows that d(z,y) < d(z, z) + d(z,y). The properties listed follow easily.

Definition. The set consisting of the elements of X with equality relation
defined by z = y if d(z,y) = 0, will be called the collapsed set of X by F, denoted
by Xr. The set Xp with the metric d will be called the collapsed space of X by F.

Theorem 2. Let (X, 0) be a metric space, let F° be a located subset of X, let
Xo=X-—F,andletpe F.
(a) The natural mapping i : X — XF is uniformly continuous.
(b) Restricted to Xo, the mapping @ 15 an injection into Xr.
(¢) i(Xo) = Xr — {p}-
(d) The inverse j : i(Xo) — Xo 15 uniformly continuous on each compact subset
Of Z(Xo)
(e) If the space X is complete, and if (Y, ci) is the completion of (Xp,d), then
Xr—{p}=Y - {p}.
Proof. (a), (b) and (c) follow directly from the definition of the metric d and
Theorem 1.
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(d). Let K be a compact subset of Xz — {p}. Using [6, Lemma 5.3], construct a
point y in K so that d(p,y) < 2d(p, K'). This shows that K is bounded away from p
with respect to d, and thus also bounded away from F with respect to ¢. It follows
that j 1s uniformly continuous on K.

(). Let y € Y — {p}. Then d(y,p) > 0, so there exists a sequence {r,} in X,
bounded away from p with respect to d, with z, — y with respect to d. Since {z,}
is Cauchy in d, and bounded away from F with respect to g, it is Cauchy in ¢. Thus
there exists z € X such that z, — z with respect to p. It follows that z, — x with
respect to d also, and thus y = z.

3. Remetrization of metric complements

The following generalizes a construction due to D. BRIDGES [2].

Theorem 3. Let Xo be the metric complement of a located set F' in a compact
metric space (X, ), let Xo be nonvoid, and fir a point w in F. Then Xy is locally
compact in the metric

o0(z,y) = {o(z,y) Alo(z, F) + oy, F)]} + 11/ o(z, F) — 1/oly, F)|,

and the completion Y of X is a one-point compactification of (Xo, o), with point at
mfinity w.

Proof. Since X is totally bounded, so is (XF,d), and thus (Y (]) is compact.
Proposition 4.6.9 of [2] applies directly to Y — {w}; it is locally compact relative to
the new metric do, and Y is a one-point compactification, with point at infinity w.
Since X is complete, Y — {w} is merely X — {w}, which is thus locally compact in
the metric

do(2,y) = d(z,y) + |1/d(z,w) ~ 1/d(y,w)]-

The correspondence between Xy and Xp — {w} induces the metric go, with respect
to which Xj is locally compact, with Y a one-point compactification.

4. Examples

a) Let X be the closed unit interval [0, 1], and let F be the set {0, 1} of endpoints.
Then Xr may be thought of as a loop. The open interval Xo = (0,1) is locally
compact in the metric go and the circle is a one-point compactification. However, the
loop XF itself is constructively only a noncomplete subspace of the circle. There are
Cauchy sequences on the loop which have no limit because we cannot tell on which
side of the joint they cluster. Points in X are born of points in [0, 1], and remember .
their parentage.

b) On the real line R, [5] characterizes the metric complement U of a located set
F as a countable union of disjoint open intervals. When U is bounded, it is locally
compact under the metric pg. The distances g(x, F') used in calculating gg are simply
distances to the endpoints of the intervals. The one-point compactification is formed
by identifying the points of F, and forming the completion. When U resolves into
two finite open intervals, R p may be realized as a curve in the form of the symbol .
With more components, there are more loops; the one-point compactification is the
completion, and the point at infinity is the junction.
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