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CONSTRUCTIVE PROJECTIVE EXTENSION

OF AN INCIDENCE PLANE

MARK MANDELKERN

Abstract. A standard procedure in classical projective geometry, using pen-
cils of lines to extend an incidence plane to a projective plane, is examined
from a constructive viewpoint. Brouwerian counterexamples reveal the limita-
tions of traditional pencils. Generalized definitions are adopted to construct
a projective extension. The main axioms of projective geometry are verified.
The methods used are in accordance with Bishop-type modern constructivism.

Introduction

In the classical theory of projective geometry, it is a fairly simple matter to
extend an incidence plane to a projective plane; a line at infinity is added, and
pencils of parallel lines become the points at infinity. A projective plane results;
the required projective axioms are satisfied. In a strictly constructive environment,
however, such an extension presents difficulties due to the indeterminate nature of
arbitrary pencils of lines.

Background. An extension of an incidence plane has been constructed by Heyt-
ing [H59] and van Dalen [D63], using intuitionistic methods. This work left open
the question of the validity of the projective axiom stating that any two lines have
a common point. A recent paper [M13] gave a Brouwerian counterexample to
demonstrate that in the Heyting extension the common point axiom is construc-
tively invalid.

New extension method. An extension of an incidence plane will be constructed
using less restrictive definitions, admitting the points and lines of nonspecific charac-
ter that inevitably emerge in a constructive setting. The main axioms of projective
geometry, including the axiom that any two lines have a common point, will be
verified.

Pencils of lines. Traditionally, a pencil of lines is either a family of parallel lines,
or the family of lines passing through a given point. Here we use the intrinsic
properties of these specific pencils in adopting a definition which includes pencils
with nonspecific properties, such as those that arise in a constructive setting. Points
in the extended plane will be based on these generalized pencils.

Virtual lines. A central problem in the construction of a projective extension is
the difficulty in determining the nature of an extended line by means of an object
in the original plane. A line in the extended plane may or may not contain points
of the original plane; it is in general impossible to determine, constructively, which
case occurs. This leads to the concept of a virtual line, a set of points which, if
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nonvoid, is a line. Virtual lines will be used to construct points and lines in the
extended plane.

Bishop-type constructivism. We follow the constructivist principles set out by
Errett Bishop. Applying these principles when reworking classical mathematics can
have interesting and surprising results. For the distinctive characteristics of Bishop-
type constructivism, as opposed to intuitionism or recursive function theory, see
[BR87].

Axioms. There are various approaches to the constructivization of a classical
theory. Bishop’s proposal is to find constructive versions of classical theorems,
and to give them constructive proofs. Thus we adopt no new axioms; we use only
constructive versions of the usual classical axioms for an incidence plane. These
axioms are valid on the real plane R

2, taking note of Bishop’s thesis that “all
mathematics should have numerical meaning”.1

Logical setting. This work uses informal intuitionistic logic; it does not operate
within a formal logical system. For the origins of modern constructivism, and
the disengagement of mathematics from formal logic, see Bishop’s Chapter 1, “A
Constructivist Manifesto”, in [B67] or [BB85]; see also [S70], [R82], and [M85].
Concerning the source of misunderstandings in the mathematical community as to
the methods and philosophy of constructivism, see [B65].

1. Preliminaries

We assume an incidence plane G =(P,L ), with axiom groups G and L, and
definitions, conventions, and results from Section 2 of [M07].

Terminology. Some terminology and notation used here will be slightly different
from that used in [M07]. The line through points Q and R will be denoted by QR.
When the lines l and m are distinct and have a common point, we will say that
they are intersecting (rather than “nonparallel”); the unique common point will
be denoted by l×m. Note that the condition intersecting is a primary relation for
lines; parallel is its negation. For any set S, the term nonvoid, and the expression
S �= ∅, are applied in the strict sense: an element of S has been constructed; it is
not sufficient to prove ¬(S = ∅). A distinguished line l0 ∈ L will be selected.

Constructive mathematics. A characteristic feature of the constructivist program
is the meticulous use of the connective “or”. To prove “A or B” constructively, it
is required that either we prove A, or we prove B; it is not sufficient to prove the
contrapositive ¬(¬A and ¬B).

To clarify the methods used here, we give examples of familiar properties of
the real numbers which are constructively invalid, and also properties which are
constructively valid. The following classical properties of a real number c are con-
structively invalid: “Either c < 0 or c = 0 or c > 0”, and “If ¬(c ≤ 0 ), then
c > 0”. The relation c > 0 is given a strict constructive definition, with far-reaching
significance. Then, the relation c ≤ 0 is defined as ¬(c > 0). A constructively valid
property of the reals is the Constructive Dichotomy Lemma: If c < d, then for any
real number x, either x > c, or x < d. This lemma is applied as a constructive
substitute for the constructively invalid Trichotomy. For more details, see [B67] or
[BB85].

Brouwerian counterexamples. To determine the specific nonconstructivities in a
classical theory, and thereby to indicate feasible directions for constructive work,

1Preface, pages vii-x, in [B67]; reprinted as Prolog, pages 1-3, in [BB85].
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Brouwerian counterexamples are used, in conjunction with omniscience principles.
A Brouwerian counterexample is a proof that a given statement implies an om-
niscience principle. In turn, an omniscience principle would imply solutions or
significant information for a large number of well-known unsolved problems. This
method was introduced by L. E. J. Brouwer [Br08] to demonstrate that use of the
law of excluded middle inhibits mathematics from attaining its full significance.
Examples will be constructed on the real plane R

2. For any real number t, the line
on R

2 with equation y = t will be denoted lt.
Omniscience principles may be stated in terms of real numbers; we will have use

for the following:

Limited principle of omniscience (LPO). For any real number c, either c = 0
or c �= 0.

Weak limited principle of omniscience (WLPO). For any real number c,
either c = 0 or ¬(c = 0).

Lesser limited principle of omniscience (LLPO). For any real number c,
either c ≤ 0 or c ≥ 0.

Markov’s principle (MP). For any real number c, if ¬(c = 0), then c �= 0.

A statement is considered constructively invalid if it implies an omniscience prin-
ciple. Following Bishop, we may at times use the italicized not to indicate a con-
structively invalid statement. For more information concerning Brouwerian coun-
terexamples and other omniscience principles, see [B67] or [BB85], [M83], [M88],
[M89], and [R02].

2. Pencils

The definition for a pencil of lines will involve the intrinsic properties found in
pencils of specific type. This will ensure the inclusion of pencils of unknown type
that arise in a constructive environment. The definition will also admit pencils for
which no lines have been previously constructed, since this situation often occurs
in a constructive setting. We assume the incidence plane G =(P,L ) as indicated
in Section 1.

Definition 2.1.
• For any point Q ∈ P, we define

Q∗ = {l ∈ L : Q ∈ l}.
• For any line l ∈ L , we define

l∗ = {m ∈ L : m ‖ l}.
• A family of lines ρ, of the form Q∗, where Q ∈ P, or l∗, where l ∈ L , will be
said to be a regular pencil.
• A family of lines α will be said to be a pencil if it satisfies these two conditions:

(1) α cannot contain fewer than two lines. That is, ¬(α = ∅) and ¬(α is a
singleton); equivalently, ¬(l,m ∈ α implies l = m).

(2) If l and m are distinct lines in α with l,m ∈ ρ, where ρ is a regular pencil,
then α ⊂ ρ.
• A pencil of the form Q∗ will be said to be a point pencil.
• A pencil α with the property that l ‖ m, for any lines l and m in α, will be said
to be a parallel pencil.
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• A pencil α will be said to be complete if the following condition holds:
(2A) If l and m are distinct lines in α with l,m ∈ ρ, where ρ is a regular pencil,

then α = ρ.
• A pencil α will be said to be strictly complete if the following condition holds:

(2B) If α ⊂ ρ, where ρ is a regular pencil, then α = ρ.
• For any pencil α, and any line l, we say that l lies outside α, written l /∈ α, if
l �= m for all lines m ∈ α.
• Pencils α and β are said to be distinct, written α �= β, if there exists a line l ∈ α
such that l /∈ β, or there exists a line l ∈ β such that l /∈ α.

Notes for Definition 2.1.
(i) Not every parallel pencil is regular. For a Brouwerian counterexample, let

c ∈ R with ¬(c = 0). On R
2, set α = {l ∈ L : c �= 0 and l ‖ l0}. It is evident that

α is a parallel pencil. By hypothesis, α = m∗ for some line m ∈ L ; thus m ∈ α,
and c �= 0. Hence MP results.

For an alternative counterexample, let c ∈ R and set β = {l ∈ L : c = 0 and l ‖
l0} ∪ {l ∈ L : c �= 0 and l ‖ l0}; now the hypothesis implies LPO. This example
may be easily modified so that the Law of Excluded Middle (LEM) results.

(ii) In the definition of a pencil, condition (2A) would not be a suitable substitute
for condition (2); this will be indicated by the Brouwerian counterexample in note (i)
following Theorem 2.16.

(iii) Adding condition (2B) to the definition of a pencil would complicate the
construction of pencils in Theorem 2.6 and Theorem 3.4; this will be indicated by
Brouwerian counterexamples in the notes following these theorems.

Lemma 2.2. A pencil may be contained in at most one regular pencil.

Proof. Let α be any pencil. First assume that α ⊂ Q∗ for some point Q, and also
α ⊂ l∗ for some line l. Let m,n ∈ α and suppose that m �= n; then the lines m and
n intersect at Q, and are also parallel to l, a contradiction. Thus m = n, and α
contains fewer than two lines, a contradiction.

Now let α ⊂ Q∗ and also α ⊂ R∗, for points Q and R, and suppose that Q �= R.
Then for any line l ∈ α, we have l = QR, so α contains only one line, a contradiction.
Thus Q = R, and Q∗ = R∗.

Finally, let α ⊂ l∗ and also α ⊂ m∗, for lines l and m. For any lines n1, n2 ∈ α, we
have n1 ‖ l and n2 ‖ m. Suppose that l and m intersect; it follows from Proposition
2.11 of [M07] that n1 and n2 intersect, so α is contained in a point pencil, a
contradiction. Hence l ‖ m, so l∗ = m∗. �

Lemma 2.3. Let Q ∈ P and let l,m ∈ L .
(a) l /∈ Q∗ if and only if Q lies outside l.
(b) m /∈ l∗ if and only if m intersects l.

Proof. (a) First let Q /∈ l. If m ∈ Q∗, then Q ∈ m, so l �= m. Thus l /∈ Q∗. Now let
l /∈ Q∗. Construct the line n so that Q ∈ n and n ‖ l; then n ∈ Q∗, so l �= n. Thus
l and n are parallel and distinct, so Q /∈ l.

(b) First let m intersect l, and let n ∈ l∗. Then n ‖ l, so m intersects n, and
m �= n. Thus m /∈ l∗. Now let m /∈ l∗, choose any point Q ∈ m, and draw the line
n so that Q ∈ n and n ‖ l. Then n ∈ l∗, so m �= n, and m intersects n; thus m
intersects l. �
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Corollary 2.4. Let ρ be any regular pencil, and l any line. If ¬(l /∈ ρ), then l ∈ ρ.

Notes for Corollary 2.4.
(i) For an arbitrary pencil, this property would be constructively invalid. For

a Brouwerian counterexample, let c ∈ R with ¬(c = 0), and set α = {lt : t ∈
R and c �= 0}. Then ¬(l0 /∈ α), but l0 ∈ α would imply that c �= 0; hence MP
results.

The same pencil α, together with β = l∗0 ,may be used to show that the statement
“If ¬(α �= β), then α = β ” is constructively invalid. See, however, Lemma 4.2.

(ii) This property will be extended to a wider class of pencils in Theorem 2.17.

Corollary 2.5. Let α be any pencil, and l any line. If ¬(l /∈ α) and α ⊂ ρ for
some regular pencil ρ, then l ∈ ρ.

Theorem 2.6. There exists a complete pencil containing any given lines l and m.
Define

ϕ0 = {l,m},
ϕ1 = {n ∈ L : l ×m ∈ n},
ϕ2 = {n ∈ L : n ‖ l ‖ m},

ϕ(l,m) =
⋃

i
ϕi.

Then ϕ(l,m) is a complete pencil containing l and m.

Proof. Assume that ϕ(l,m) contains fewer than two lines. Suppose that l intersects
m, and set Q = l ×m; then ϕ1 = Q∗, a contradiction. Thus l ‖ m, and ϕ2 = l∗, a
final contradiction. This shows that the assumption is contradictory.

Let n1 and n2 be distinct lines in ϕ(l,m) with n1, n2 ∈ ρ for some regular pencil
ρ. In the case ρ = Q∗ for some point Q, we have n1 × n2 = Q. Each of the lines
n1 and n2 lies in one of the sets ϕi, and the required condition α = Q∗ is easily
verified by considering each of the resulting cases. In the case that ρ is a regular
parallel pencil, the verification follows similarly.

Hence ϕ(l,m) is a complete pencil. �

Notes for Theorem 2.6.
(i) It is not assumed that the lines l and m are distinct.
(ii) The stronger conclusion, “ϕ(l,m) is strictly complete”, would be construc-

tively invalid. For a Brouwerian counterexample, let c ∈ R with ¬(c = 0), let l and
m be the lines with equations y = 0 and y = cx, and consider the pencil ϕ(l,m).
Clearly, ϕ0 ⊂ O∗, where O is the origin. Let n ∈ ϕ1. Then l �= m, and l ×m = O;
thus ϕ1 = O∗, and n ∈ O∗. Thus ϕ1 ⊂ O∗. If a line is in ϕ2, then l ‖ m, so
c = 0, a contradiction; thus ϕ2 = ∅. This shows that ϕ(l,m) ⊂ O∗. By hypothesis,
ϕ(l,m) = O∗, so m0 ∈ ϕ(l,m), where m0 is the y-axis. It follows that m0 ∈ ϕ1,
and thus c �= 0. Hence MP results.

(iii) When l �= m, the Heyting “p.point” is defined in [H59] by P(l,m) = {n ∈
L : n ∩ l = l ∩m or n ∩m = l ∩m}. Clearly, ϕ(l,m) ⊂ P(l,m), and ¬(ϕ(l,m) �=
P(l,m)). However, equality here would be constructively invalid. For a Brouwerian
counterexample, let c ∈ R and let l and m be the lines with equations y = 0 and
y = 1− cx. Consider the line with equation y = 2− 2cx; LPO results.
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Many other results in the present paper also have analogues in [H59]. However,
the basic definitions differ in quite fundamental ways, so a detailed comparison of
the two approaches is not feasible.

(iv) This method will be extended in Theorem 3.4.

Lemma 2.7.
(a) A complete pencil α is a point pencil if and only if α ∩ l∗ �= ∅ for every

regular parallel pencil l∗.
(b) Point pencils Q∗ and R∗, if distinct, have the line QR in common.

Proof. (a) The necessity is the parallel postulate. For the converse, choose any
intersecting lines m1 and m2, and select lines n1 ∈ α ∩ m∗

1 and n2 ∈ α ∩ m∗
2. It

follows that n1 intersects n2, so α = Q∗, where Q = n1 × n2.
(b) We may select a line l ∈ R∗ such that l /∈ Q∗. Then Q /∈ l and R ∈ l, so

Q �= R. Thus QR is a line common to both pencils. �

Lemma 2.8. For any given complete pencil α, the statement “¬(α = ρ) for every
regular pencil ρ”, is contradictory. However, the statement “Every strictly complete
pencil is either a point pencil or a regular parallel pencil” is constructively invalid.

Proof. Assume the first statement. Let l,m ∈ α, and suppose that l �= m. If l
intersects m, with Q = l×m, then α = Q∗, a contradiction. Thus l ‖ m, so α = l∗,
also a contradiction. Hence l = m. This shows that α contains fewer than two lines,
a final contradiction.

For a Brouwerian counterexample to the second statement, let c ∈ R, let l and
m be the lines with equations y = 0 and y = 1− cx, and set β = ϕ(l,m) using the
construction of Theorem 2.6. The pencil β is strictly complete; apply the hypothesis
to β, and LPO results. �

Theorem 2.9. Let Q∗ be any point pencil, and β any complete pencil. Then
¬(Q∗ ∩ β = ∅). However, the stronger conclusion, “Q∗ ∩ β �= ∅”, is constructively
invalid.

Proof. Assume that Q∗ ∩ β = ∅. Let l,m ∈ β and suppose that l �= m. Suppose
further that l intersects m, and set R = l × m; then β = R∗. Now suppose even
further that R �= Q; then QR ∈ Q∗ ∩β, a contradiction. Thus R = Q, and β = Q∗,
a contradiction. Thus l ‖ m and β = l∗. Since the parallel postulate provides a line
in l∗ passing through Q, this is a contradiction. Thus l = m. This shows that β
contains fewer than two lines, a final contradiction. Hence ¬(Q∗ ∩ β = ∅).

For a Brouwerian counterexample to the stronger conclusion, let c ∈ R and
take Q at the origin in R

2. Let l and m be the lines with equations y = 1 and
y = 1 + c − cx, and let β = ϕ(l,m) be the complete pencil constructed using
Theorem 2.6. Set R = (1, 1). Note that if c = 0, then β = l∗, so the x-axis l0 is the
unique line common to Q∗ and β. On the other hand, if c �= 0, then β = R∗, and
QR is the unique common line. By hypothesis, Q∗ and β have a common line n;
either n �= l0, or n �= QR. It follows that either ¬(c = 0), or c = 0. Hence WLPO
results. �

Applications of this theorem will be by way of the following:

Corollary 2.10. If α is a complete pencil with the property that α ∩ β = ∅ for
some complete pencil β, then α is a parallel pencil.
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The definition of a pencil includes multiple pencils which will represent the same
point in the projective extension. Thus we adopt the following:

Definition 2.11.
• Pencils α and β will be said to be equivalent, written α ≈ β, if for any regular
pencil ρ, the following condition is satisfied: α ⊂ ρ if and only if β ⊂ ρ.
• The pencils α and β are said to be nonequivalent if ¬(α ≈ β).
• With regard to the resulting equivalence relation ≈, the equivalence class con-
taining the pencil α will be denoted α.

Theorem 2.12. Let α and β be any pencils.
(a) If α and β have two distinct lines in common, then α ≈ β. Nonequivalent

pencils have at most one line in common.
(b) If α is a parallel pencil, and α ≈ β, then β is also a parallel pencil.
(c) If ¬(α �= β), then α ≈ β. Conversely, if α ≈ β, with α complete and β strictly

complete, then ¬(α �= β).

Proof. (a) Let l and m be lines common to α and β, with l �= m. If α ⊂ ρ for some
regular pencil ρ, then l,m ∈ ρ, so β ⊂ ρ. Thus α ≈ β.

(b) Let l,m ∈ β, and suppose that l and m intersect at some point Q. Then
β ⊂ Q∗, so also α ⊂ Q∗. For any lines u, v ∈ α, we have u ‖ v. If u �= v, then
α ⊂ u∗, contradicting Lemma 2.2. Thus u = v, and α contains fewer than two
lines, a contradiction; hence l ‖ m.

(c) Let ¬(α �= β). Let α ⊂ ρ, let l ∈ β, and suppose that l /∈ ρ. Then l /∈ α, so
α �= β, a contradiction. Thus ¬(l /∈ ρ), so by Corollary 2.4 we have l ∈ ρ. Thus
β ⊂ ρ. This shows that α ≈ β.

Now let α ≈ β, with α complete and β strictly complete, and assume that α �= β.
Suppose that α = ρ for some regular pencil ρ; then α ⊂ ρ, so β ⊂ ρ, and β = ρ,
a contradiction. Thus ¬(α = ρ) for all regular pencils ρ. By Lemma 2.8, this is a
contradiction. Hence ¬(α �= β). �

Lemma 2.13.
(a) Let α be any pencil, and ρ a regular pencil. Then α ≈ ρ if and only if α ⊂ ρ.
(b) There exists at most one regular pencil in any given equivalence class of

pencils.

Proof. In (a), let α ⊂ ρ; then it follows from Lemma 2.2 that α ≈ ρ. The converse
is immediate. Now (b) follows from (a). �

Theorem 2.14. Let α and β be parallel pencils.
(a) If α and β have a line in common, then α ≈ β. Nonequivalent parallel pencils

have no common lines.
(b) If α and β have a line in common, and are strictly complete, then α = β.

Proof. Select a common line l; then α ⊂ l∗ and β ⊂ l∗. In (a), it follows from
Lemma 2.13 that α ≈ β. In (b), we have α = l∗ and β = l∗; thus α = β. �

Definition 2.15. For any pencil α, we define

α′ =
⋃

{β : β ∈ α}.

After verification in the next theorem, the pencil α′ will be called the full pencil in
the equivalence class α. A pencil α will be said to be prime if α = α′.
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Theorem 2.16. The union α′ of all pencils in an equivalence class α is a strictly
complete pencil, equivalent to the pencils in the class.

The pencil α′ is unique in this limited sense: If β is any complete pencil in the
equivalence class α, then ¬(β �= α′). However, the statement “If β is any strictly
complete pencil in α, then β = α′” is constructively invalid.

If α contains a regular pencil ρ, then α′ = ρ.

Proof. (i) To show that α′ is a pencil, let l and m be distinct lines in α′ with l,m ∈ ρ
for some regular pencil ρ, and select pencils β1, β2 ∈ α with l ∈ β1 and m ∈ β2.

Set β = β1 ∪ β2. To show that β is a pencil, let n1 and n2 be distinct lines in
β with n1, n2 ∈ σ for some regular pencil σ. If n1 and n2 both belong to β1, then
β1 ⊂ σ, so also β2 ⊂ σ, and β ⊂ σ. Similarly for β2. Thus we may assume that
n1 ∈ β1 and n2 ∈ β2. Let n ∈ β; we may assume that n ∈ β1. Suppose that n /∈ σ;
it follows that n �= n1, with n, n1 ∈ β1. Then β1 ⊂ σ, so also β2 ⊂ σ, and β ⊂ σ,
so n ∈ σ, a contradiction. Thus n ∈ σ. This shows that β ⊂ σ. Hence β is a pencil.
Clearly, β ≈ β1, so β ∈ α.

Since l and m are distinct lines in β with l,m ∈ ρ, it follows that β ⊂ ρ. For any
pencil γ ∈ α, we have γ ≈ β, so γ ⊂ ρ; thus α′ ⊂ ρ. Hence α′ is a pencil.

(ii) Let ρ be a regular pencil with α ⊂ ρ. Then γ ⊂ ρ for all pencils γ ∈ α, so
α′ ⊂ ρ. Hence α′ ≈ α.

(iii) If α′ ⊂ ρ for some regular pencil ρ, then it follows from Lemma 2.13 that
α′ ≈ ρ, so ρ ∈ α, and ρ ⊂ α′; thus α′ = ρ. This shows that α′ is a strictly complete
pencil.

(iv) If β is a complete pencil in the equivalence class α, then it follows from
Theorem 2.12 that ¬(β �= α′).

(v) For a Brouwerian counterexample involving the statement in quotes, let
c ∈ R, let m be the line on R

2 with equation y = 1 − cx, and set α = ϕ(l0,m). If
α ⊂ n∗ for some line n, then c = 0 and α = l∗0 = n∗. If α ⊂ R∗ for some point R,
with R = (d, e), then e = 0 and 1− cd = 0, so c �= 0 and α = (1/c, 0)∗ = R∗.

Now consider the family of lines β = {l ∈ L : c = 0 and l ‖ l0} ∪ {l ∈ L : c �=
0 and (1/c, 0) ∈ l}. It is clear that β is a pencil. Let β ⊂ n∗ for some line n; then
c = 0 and β = l∗0 = n∗. Now let β ⊂ R∗ for some point R = (d, e). Suppose that
|c| < 1/(|d| + 1). Suppose further that c �= 0; then β = (1/c, 0)∗. It follows that
R = (1/c, 0), so d = 1/c and |d| > |d|+ 1, an absurdity. Thus c = 0, and β = l∗0, a
contradiction. This shows that |c| ≥ 1/(|d|+ 1), so c �= 0, and β = (1/c, 0)∗ = R∗.

Thus β is strictly complete, and β ≈ α. By hypothesis, β = α′. Since l0 ∈ α ⊂ α′,
it follows that l0 ∈ β, and LPO results.

(vi) If ρ ∈ α for some regular pencil ρ, then α′ ≈ ρ, so by Lemma 2.13 we have
α′ ⊂ ρ. Thus α′ = ρ. �

Notes for Theorem 2.16.
(i) The proof shows that the union of any two equivalent pencils is also a pencil,

equivalent to the given pencils. However, the union of two complete equivalent
pencils need not be complete. For a Brouwerian counterexample, let c ∈ R with
¬(c = 0). On R

2, set α = {l0} ∪ {lt : t ∈ R and c �= 0} and β = {l1} ∪ {lt : t ∈
R and c �= 0}; these pencils are complete and equivalent. The hypothesis applied
to α ∪ β results in MP. This is one of the facts concerning complete pencils that
necessitates the more inclusive definition of a pencil adopted in Definition 2.1.

(ii) The union of two strictly complete equivalent pencils is strictly complete.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONSTRUCTIVE PROJECTIVE EXTENSION OF AN INCIDENCE PLANE 699

(iii) The counterexample in the proof of the theorem involves an equivalence
class containing no regular pencil. On the other hand, it follows from Lemma 2.8
that the statement “If ρ is any regular pencil, then ¬(α′ = ρ)” is contradictory.

Theorem 2.17. Let α be a prime pencil, and l any line. If ¬(l /∈ α), then l ∈ α.

Proof. Set β = α ∪ {l}. To show that β is a pencil, let m1 and m2 be distinct lines
in β with m1,m2 ∈ ρ for some regular pencil ρ. Either both lines are in α, or one
line is l.

In the first case, since α is a pencil we have α ⊂ ρ. It follows from Corollary 2.5
that l ∈ ρ; thus β ⊂ ρ.

In the second case, we may say that m1 ∈ α and m2 = l. Let n be any line in α,
and suppose that n /∈ ρ. If α were a regular pencil, then by Corollary 2.4 we would
have m2 = l ∈ α, and it would follow that α ⊂ ρ, so n ∈ ρ, a contradiction. Thus
¬(α is regular), and by Lemma 2.8 this is contradictory. Thus n ∈ ρ. This shows
that α ⊂ ρ, and thus β ⊂ ρ. Hence β is a pencil.

To show that β is equivalent to α, let α ⊂ ρ for some regular pencil ρ. It follows
from Corollary 2.5 that l ∈ ρ, and this shows that β ⊂ ρ. Thus β ≈ α. Since α is a
prime pencil, it follows that β ⊂ α, and therefore l ∈ α. �

3. Virtual lines

Consider the following classical situation: If a line L in the extended plane
contains a proper point, then the set S, of all proper points on L, is a line in
the original plane. However, if L is the line at infinity, then the set S is void.
Constructively, we will not know in general which is the case. Thus we adopt the
following:

Definition 3.1.
• A set p of points in P will be said to be a virtual line, or v-line, if it satisfies this
condition: If p is nonvoid, then p is a line.
• The family of all v-lines will be denoted V .
• The v-lines p and q will be said to be distinct, written p �= q, if they satisfy these
two conditions:

(1) ¬(p = q).
(2) If p, q ∈ L , then p �= q in the sense of distinct lines in L .

• The expression p �= ∅ will imply that the v-line p is nonvoid, and thus p is a line.
• When we write p× q = Q, or p ‖ q, this will imply that p and q are lines.

The notion of a v-line also arises in connection with pencils. Theorem 2.12
shows that nonequivalent pencils have at most one line in common, and Theorem
2.14 shows that nonequivalent parallel pencils have no common lines. Thus the
family of lines common to two nonequivalent pencils may consist of a single line,
or it may be void; constructively, it is in general unknown as to which alternative
holds.

Definition 3.2. For any nonequivalent pencils α and β, we define

α � β = {Q ∈ P : Q ∈ l ∈ α ∩ β for some l ∈ L }.
The set of points α � β will be called the core of the pair α, β.

Lemma 3.3. The core α � β, where α and β are any nonequivalent pencils, is a
v-line.
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Proof. Set p = α � β, and let p �= ∅. Construct a point R ∈ p and a line m such
that R ∈ m ∈ α∩ β; clearly m ⊂ p. For any point Q ∈ p, we have Q ∈ l ∈ α∩ β for
some line l; it follows from Theorem 2.12 that l = m, so Q ∈ m. This shows that
p ⊂ m. Hence p = m, so p is a line. �

Theorem 3.4. Let p and q be any v-lines. Define

ϕ0 = {p, q} ∩ L ,

ϕ1 = {l ∈ Q∗ : p× q = Q},
ϕ2 = {l ∈ p∗ : p ‖ q},
ϕ3 = {l ∈ p∗ : p �= ∅, q = ∅} ∪ {l ∈ q∗ : q �= ∅, p = ∅},
ϕ4 = {l ∈ l∗0 : p = q = ∅},

ϕ(p, q) =
⋃

i

ϕi.

Then ϕ(p, q) is a complete pencil.

To aid in the proof, and for later use, we have first:

Lemma 3.5. In Theorem 3.4,
(a) If p× q = Q, then ϕ(p, q) = Q∗.
(b) If p ‖ q, then ϕ(p, q) = p∗.
(c) If there exists a line l in ϕ2 ∪ ϕ3 ∪ ϕ4, then ϕ(p, q) = l∗.
(d) If p = ∅ or q = ∅, then ϕ(p, q) is a parallel pencil.

Proof. The first three properties are immediate. For (d), let q = ∅, and let l,m ∈
ϕ(p, q); then l ∈ ϕ0 ∪ ϕ3 ∪ ϕ4. If l ∈ ϕ0, then l = p, so p is nonvoid, and ϕ3 = p∗.
Since m ∈ ϕ0 or m ∈ ϕ3, it follows that m ‖ l. If l lies in ϕ3 or ϕ4, then (c)
applies. �

Proof of Theorem 3.4. Assume that “l,m ∈ ϕ(p, q) implies l = m”. Suppose that
one of the v-lines, say p, is nonvoid. Now suppose that q �= ∅, and then suppose
further that p intersects q, with Q = p × q. Then ϕ(p, q) = Q∗, a contradiction.
Thus p ‖ q, so ϕ(p, q) = p∗, a contradiction. Thus q = ∅, and ϕ(p, q) = p∗,
a contradiction. Thus both v-lines are void, so ϕ(p, q) = l∗0 , contradicting the
assumption. This shows that ϕ(p, q) cannot contain fewer than two lines.

Let l,m ∈ ϕ(p, q) with l �= m. First let l intersect m, with Q = l × m; then
l,m ∈ ϕ0 ∪ ϕ1. In the first case, where l,m ∈ ϕ0, it follows that p × q = Q, so
ϕ(p, q) = Q∗. In the other three cases, ϕ1 �= ∅, and again ϕ(p, q) = Q∗. Now let
l ‖ m. Using part (c) of the lemma we may assume that l,m ∈ ϕ0 ∪ ϕ1. Since
ϕ1 = ∅, we may say that l = p and m = q. Now ϕ(p, q) = ϕ2 = p∗ = l∗.

Hence ϕ(p, q) is a complete pencil. �

Notes for Theorem 3.4.
(i) It is not assumed that the v-lines p and q are distinct.
(ii) The stronger conclusion, “ϕ(p, q) is strictly complete”, would be construc-

tively invalid. For a Brouwerian counterexample, let c ∈ R with ¬(c = 0), set
p = {(t, 0) : t ∈ R and c �= 0}, and set q = {(0, t) : t ∈ R and c �= 0}. Then
ϕ(p, q) ⊂ (0, 0)∗, but ϕ(p, q) = (0, 0)∗ would imply MP.
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The definition of a v-line includes multiple v-lines which will form the basis for
the same line in the projective extension. Thus we adopt the following:

Definition 3.6.
• The v-lines p and q will be said to be equivalent, written p ≈ q, if ¬(p �= q).
• After verification in Theorem 3.8, the equivalence class containing the v-line p
will be denoted p.
• For any v-line p ∈ V , we define

p′ =
⋃

{q : q ∈ p}.

• The v-line p will be said to be prime if p = p′.
• The family of all prime v-lines will be denoted V ′.

Lemma 3.7. For any v-lines p and q, the following conditions are equivalent:
(a) p ≈ q.
(b) For any line l ∈ L , p ⊂ l if and only if q ⊂ l.

Proof. Let p ≈ q, and let p ⊂ l for some line l. Let Q ∈ q, and suppose that Q /∈ l;
then ¬(Q ∈ p), so ¬(p = q). If p ∈ L , then p = l, so Q /∈ p; thus p and q are
distinct as lines. This shows that p and q are distinct as v-lines, a contradiction;
thus Q ∈ l. Hence q ⊂ l.

Let condition (b) hold, and assume that p �= q. Under these conditions, it is
clear that the two v-lines cannot both be nonvoid. Suppose that one of the v-lines,
say p, is nonvoid; it follows that q is void. Select any two distinct lines; since q is
contained in both lines, condition (b) implies that the line p is contained in both
lines, an absurdity. Thus both v-lines are void. Now p = q, a contradiction. This
shows that ¬(p �= q), so p ≈ q. �

Theorem 3.8. The relation ≈ on the family V of v-lines is an equivalence relation.
The union p′ of all v-lines in an equivalence class p is a v-line, equivalent to the
v-lines in the class.

Proof. It follows from the lemma that ≈ is an equivalence relation. Let p′ �= ∅,
and select a v-line r ∈ p with r �= ∅; thus r is a line. For any v-line q ∈ p, it follows
that q ⊂ r. Thus p′ ⊂ r, so p′ = r. Hence p′ is a v-line. If p ⊂ l for some line l, then
q ⊂ l for all q ∈ p; thus p′ ⊂ l. This shows that p′ ≈ p. �

Lemma 3.9. Let p be an equivalence class of v-lines.
(a) If q and r are nonvoid v-lines in p, then q = r.
(b) If there exists a v-line q in p with q = ∅, then r = ∅ for all r ∈ p.

Proof. (a) Since q and r are both lines, and ¬(q �= r), it follows from Proposition
2.16 in [M07] that q = r.

(b) Let r ∈ p, and suppose that r �= ∅; thus r is a line. Select any two distinct
lines; since q is contained in both lines, it follows from Lemma 3.7 that r is contained
in both lines, an absurdity. Thus r = ∅. �

4. Extension points and extension lines

The e-points and e-lines defined here will be used to construct the projective
extension.
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Definition 4.1.
• An extension point, or e-point, is an equivalence class α of pencils of lines. The
e-points α and β are said to be equal, written α = β, if α ≈ β. We say that α and
β are distinct, written α �= β, if α′ �= β′.
• An extension line, or e-line, is a set λp of e-points, where p is a prime v-line, and
where α ∈ λp if α satisfies these two conditions:

(1) If p �= ∅, then p ∈ α′.
(2) If p = ∅, then α is a parallel pencil.

We say that the e-lines λp and λq are equal, written λp = λq, or distinct, written
λp �= λq, when p = q, or p �= q. The prime v-line p is called the root of λp.
• The e-line

ι = λ∅ = {α : α is a parallel pencil}
will be called the line at infinity.
• An e-point of the form Q∗, where Q ∈ P, will be said to be a proper e-point. An
e-point of the form ρ, where ρ is a regular pencil, will be called a regular e-point.
An e-line of the form λl, where l ∈ L , will be said to be a proper e-line.

Lemma 4.2.
(a) For any e-points α and β, if ¬(α �= β), then α = β.
(b) For any e-lines λp and λq, if ¬(λp �= λq), then λp = λq.

Proof. (a) Let α ⊂ ρ, where ρ is a regular pencil. It follows from Lemma 2.13 that
α ≈ ρ and from Theorem 2.16 that α′ = ρ. Let l ∈ β, and suppose that l /∈ ρ; then
α′ �= β′, so α �= β, a contradiction. Thus ¬(l /∈ ρ), and by Corollary 2.4 we have
l ∈ ρ. This shows that β ⊂ ρ. Hence α ≈ β, and α = β.

(b) The given condition implies that ¬(p �= q), so p ≈ q. Since these v-lines are
prime, it follows that p = q, and hence λp = λq. �

Lemma 4.3. For any line l ∈ L ,
(a) λl = {α : l ∈ α′}.
(b) λl ⊃ {Q∗ : Q ∈ l} ∪ {l∗}.

However, equality in (b) would be constructively invalid.

Proof. Both (a) and (b) are evident. For a Brouwerian counterexample to equality
in (b), let c ∈ R, let l and m be the lines with equations y = 0 and y = 1− cx, and
construct the pencil α = ϕ(l,m) using Theorem 2.6. Since l ∈ α, we have α ∈ λl.
If the hypothesis of equality in (b) is applied to the e-line λl, then α lies in one of
the two indicated sets. If α = l∗, then α is a parallel pencil, so c = 0. If α = Q∗,
where Q = (d, e), then α ⊂ Q∗, so e = 0 and 1 − cd = 0; thus c �= 0. Hence LPO
results. �

The e-point l∗ is called the tip of the e-line λl.

Theorem 4.4. An e-line cannot contain fewer than three e-points.

Proof. Assume that an e-line λp contains fewer than three e-points. Suppose that
p �= ∅; then p is a line, and contains at least two points. It follows from Lemma 4.3
that λp contains at least two proper e-points, and also the e-point p∗, contradicting
the assumption. Thus p = ∅, and λp is the line at infinity ι. Now λp contains the
e-points corresponding to three mutually distinct parallel pencils of lines, a final
contradiction. �
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Lemma 4.5. If α and β are distinct e-points on the line at infinity ι, then
α ∩ β = ∅. Conversely, if an e-line λp contains distinct e-points α and β, where α
and β are complete pencils with α ∩ β = ∅, then λp = ι.

Proof. The first statement follows from Theorem 2.14. For the second statement,
first note that it follows from Corollary 2.10 that α and β are parallel pencils, and
then from Theorem 2.12 that α′ and β′ are also parallel pencils. Now suppose that
p �= ∅; then p ∈ α′ ∩ β′, and it follows from Theorem 2.14 that α′ ≈ β′, so α = β,
a contradiction. Hence p = ∅, and λp = ι. �

Note on the stem of an e-line. As noted at the beginning of Section 3, the notion
of a v-line arose in connection with the set of proper e-points that lie on an e-line.
For any e-line λp, define

sp = {Q ∈ P : Q∗ ∈ λp}
and call this the stem of λp.

It is easily seen that p ⊂ sp, that ¬(p �= sp), and that p = sp when p �= ∅.
However, the statement “The stem of any e-line is a v-line” is constructively invalid.
For a Brouwerian counterexample, let c ∈ R, and set q = {(t, 0) : t ∈ R and c =
0} ∪ {(0, t) : t ∈ R and c �= 0}. It is clear that q is a v-line; construct the e-line λp

with root p = q′. To show that O∗ ∈ λp, where O is the origin, note first that the
condition p = ∅ is ruled out by Lemma 3.9, so we need consider only the condition
p �= ∅. Suppose that O /∈ p, and suppose further that c �= 0. Then p = q = m0,
where m0 is the y-axis, so O ∈ p, a contradiction. Thus c = 0, and p = q = l0, a
contradiction. Thus O ∈ p, and p ∈ O∗. Since O∗ is a prime pencil, this shows that
O∗ ∈ λp; thus O ∈ sp, so sp is nonvoid. Note that if c = 0, then sp = p = q = l0,
while if c �= 0, then sp = p = q = m0. By hypothesis, sp is a line; thus either
sp �= l0, or sp �= m0. It follows that either ¬(c = 0), or c = 0. Hence WLPO results.

5. Projective extension

The extension will be constructed and the main projective axioms will be verified.

Definition 5.1.
• We denote by P∗ the family of all e-points, and by L ∗ the family of all e-lines,
retaining the equality and inequality relations, and the relation α ∈ λp, adopted in
Definition 4.1.
• For any e-point α, and any e-line λp, we say that α lies outside λp, written α /∈ λp,
if α �= ρ for all regular e-points ρ in λp.
• G ∗ = (P∗,L ∗) is the projective extension of the incidence plane G =(P,L ).

Theorem 5.2. Let α be any e-point, and λp any e-line. If ¬(α /∈ λp), then α ∈ λp.

Proof. First let p �= ∅, and suppose that p /∈ α′. If ρ is any regular e-point on λp,
then p ∈ ρ, so α′ �= ρ, and α �= ρ; this shows that α /∈ λp, a contradiction. Thus we
have ¬(p /∈ α′), and it follows from Theorem 2.17 that p ∈ α′.

Now let p = ∅; thus λp = ι, the line at infinity. Let l,m ∈ α, and suppose that
l intersects m. Let ρ be any regular e-point on λp; then ρ = n∗ for some line n. By
Axiom L2 of [M07] we may assume that n intersects l, so l /∈ n∗. Thus α′ �= n∗,
and α �= ρ. This shows that α /∈ λp, a contradiction. Thus l ‖ m, and this shows
that α is a parallel pencil.

Hence α ∈ λp. �
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Theorem 5.3. There exists a unique e-line passing through any two distinct e-
points.

Proof. (i) Let α and β be distinct e-points; we may assume that α and β are
complete pencils. By Lemma 3.3, the core r = α � β is a v-line; set p = r′.
First let p �= ∅, and assume that p /∈ α′. Suppose that r �= ∅; then p = r ∈ α,
a contradiction. Thus r = ∅, so also p = ∅, a contradiction. This shows that
¬(p /∈ α′), and it follows from Theorem 2.17 that p ∈ α′. Now let p = ∅; then also
r = ∅. Since α and β are complete pencils, it follows from Corollary 2.10 that α is
a parallel pencil. Thus α ∈ λp, and similarly β ∈ λp.

(ii) Let λp and λq be e-lines, each passing through two distinct e-points α and

β, and assume that p �= q. Suppose that p �= ∅; then α′∩β′ = {p}. Suppose further
that q �= ∅; then also α′ ∩ β′ = {q}, so p = q, a contradiction. Thus q = ∅. Now α
and β are parallel pencils, and so also are α′ and β′. It follows from Theorem 2.14
that α′ ∩ β′ = ∅, a contradiction. Thus p = ∅. Similarly, q = ∅, so p = q, a final
contradiction. This shows that ¬(p �= q), so p ≈ q. Since p and q are prime v-lines,
it follows that p = q, and hence λp = λq. �

Corollary 5.4. Invariance of the core. Let λp be an e-line, and let α and β be any
distinct e-points on λp, where α and β are prime pencils. Then α � β = p.

Proof. Set r = α � β, and q = r′. With the construction of Theorem 5.3, α and β
will lie on the e-line λq. Thus p = q; this shows that r ⊂ p. If Q ∈ p, then p �= ∅,
so p ∈ α ∩ β. It follows from Theorem 2.12 that p = r, and thus Q ∈ r; this shows
that p ⊂ r. �

Note for Corollary 5.4. A stronger statement, without the condition “prime” pen-
cils, would be constructively invalid. For a Brouwerian counterexample, let c be a
real number with ¬(c = 0), set α = (0, 0)∗, and set β = {lt : t ∈ R and c �= 0}.
Then α, β ∈ λl0 , and α � β = {(t, 0) : t ∈ R and c �= 0}. By hypothesis, we have
α � β = l0, so c �= 0. Thus MP results.

Classically, the projective axiom concerning a common point for any two lines
need be verified only for distinct lines, there being no reason to consider identical
lines. Constructively, however, there are always innumerable pairs of lines for which
we do not know, at present, whether they are identical or distinct. Thus we require
a theorem that deals with two arbitrary lines. The point obtained will be common
to the lines in any eventuality, allowing for any possible future discovery that the
lines are distinct, or are identical.

Theorem 5.5. Any two e-lines pass through a common e-point. If the e-lines are
distinct, then the common e-point is unique.

Proof. Given the e-lines λp and λq, construct the complete pencil γ = ϕ(p, q), using
Theorem 3.4. If p �= ∅, then p ∈ ϕ0, so p ∈ γ ⊂ γ′. If p = ∅, then it follows from
Lemma 3.5 that γ is a parallel pencil. Hence γ ∈ λp, and similarly γ ∈ λq. Thus
γ is a common e-point. If λp �= λq, then uniqueness of the common e-point follows
from Theorem 5.3 and Lemma 4.2. �

Note on cotransitivity. The Brouwerian counterexample in [M13] shows that in
any projective-type extension, cotransitivity for points is constructively incompat-
ible with the existence of a common point for any two lines. It follows that the
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statement “In the extension G ∗, the cotransitivity property holds for e-points” is
constructively invalid.

For a direct Brouwerian counterexample, using the constructions of G ∗, let c ∈ R,
set d = max{c, 0}, set e = max{−c, 0}, let l be the line on R

2 with equation
y = 1 − dx, let m be the line with equation x = 1 − ey, set α = ϕ(l0, l), set
β = ϕ(m0,m), where m0 is the y-axis, set p = {(1/c, t) : t ∈ R and c > 0}, set
q = {(t, 1/c) : t ∈ R and c < 0}, and set γ = ϕ(p, q) using Theorem 3.4. To show
that α �= β, it will suffice to show that l0 /∈ β′. For any line n ∈ β′, it follows from
Axiom L2 in [M07] that either n intersects l0 or n intersects m0. In the first case,
n �= l0. In the second case, say n×m0 = (0, h); then β′ = (0, h)∗. Since m ∈ β, we
have 0 = 1 − eh, so h �= 0, and thus (0, h) /∈ l0; it follows that n �= l0. This shows
that l0 /∈ β′. Thus α′ �= β′, and α �= β. By hypothesis, we have either γ �= α or
γ �= β. In the first case, suppose that c < 0. Then d = 0, so α = l∗0. Also, p = ∅,
and q = l1/c, so γ = q∗ = l∗0 = α, a contradiction; thus c ≥ 0. Similarly, in the case

γ �= β we find that c ≤ 0. Hence LLPO results.
For an alternative counterexample, use the v-line p = {(t, 0) : t ∈ R and c =

0} ∪ {(0, t) : t ∈ R and c �= 0} to construct the pencil γ = ϕ(p, p). Assuming
cotransitivity for e-points, we have either γ �= l∗0 or γ �= m∗

0, where m0 is the y-axis.
Hence WLPO results.

Cotransitivity for e-lines in the extension G ∗ is also constructively invalid; this
may be seen using the counterexample at the end of Section 4.

Theorem 5.6. The projective plane G ∗ = (P∗,L ∗) is an extension of the inci-
dence plane G =(P,L ).

Proof. Set P ′ = {Q∗ : Q ∈ P}, the family of proper e-points, and set L ′ = {λl :
l ∈ L }, the family of proper e-lines. Then the mappings Q → Q∗ (Q ∈ P) and

l → λl (l ∈ L ) map G into G ∗, with image G
′
= (P

′
,L

′
).

If Q = R, then clearly Q∗ = R∗. Conversely, if Q∗ = R∗, then Q∗ ≈ R∗, and
since these pencils are regular, we have Q∗ = R∗. Select distinct lines l and m in
Q∗; thus l ×m = Q. Since also l,m ∈ R∗, we have l ×m = R, so Q = R.

If Q �= R, we may select a line l so that Q ∈ l but R /∈ l. Thus l ∈ Q∗, but
l /∈ R∗, so Q∗ �= R∗; since these pencils are prime, we have Q∗ �= R∗. Conversely,
if Q∗ �= R∗, then Q∗ �= R∗, and we may select a line m ∈ Q∗ with m /∈ R∗. Then
Q ∈ m but R /∈ m, so Q �= R.

For any lines l and m, it follows from Definition 4.1 that l = m (or l �= m) if
and only if λl = λm (or λl �= λm). Thus the mappings preserve the equality and
inequality relations for points and lines.

Clearly, Q ∈ l if and only if Q∗ ∈ λl. Now let Q /∈ l. For any e-point β ∈ λl, we
have l ∈ β′, but l /∈ Q∗; thus Q∗ �= β′, so Q∗ �= β. Thus Q∗ /∈ λl. Conversely, let
Q∗ /∈ λl. For any point R ∈ l, we have R∗ ∈ λl; thus Q∗ �= R∗, so Q �= R. Thus
Q /∈ l. Thus the mappings preserve the relations point on a line and point outside
a line.

Hence the mappings Q → Q∗ and l → λl form a strict isomorphism of G onto
G ′, a sub-plane of G ∗. �
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