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Introduction. The order structure of the family of prime ideals in

the ring C of all real-valued continuous functions on a topological

space has been extensively studied; in this paper we study the ana-

logous problem in the subring C* of bounded functions. The funda-

mental property of prime ideals in C* is the following.

Main Theorem. Let M* be any maximal ideal of C* and let M be

the unique maximal ideal of C such that the prime ideal MC\C* is con-

tained in M*. Then every prime ideal contained in M* is comparable

with MC\C*.

The proof involves topological properties of the Stone-Cech com-

pactification BX of a completely regular Hausdorff space X.

Of special interest are the prime z-ideals of C*. When X is a locally

compact, cr-compact Hausdorff space, we show that the family of

prime z-ideals of C*iX) contained in M* is composed of two sub-

families, order-isomorphic with naturally corresponding families of

prime z-ideals in the rings CiX) and CiBX — X).

1. Preliminaries. We shall use the terminology and notation of the

Gillman-Jerison text [3]. Applying [3, Theorem 3.9], we immediately

reduce the problem of the prime ideal structure of C*iX), and its

relation to CiX), to the case that X is a completely regular Hausdorff

space. A basic property of prime ideals in rings of functions that will

be used several times is a theorem of Kohls ([9, Theorem 2.4], see

also [3, 14.8(a), 6.6(c)]): In the ring CiX), and also in C*iX), the

prime ideals containing a given prime ideal form a chain.

The proof of the main theorem is based on Kohls' result and the

following theorem ([10, 4.4]; cf. [7, 3.l] and [6, p. 112]): A prime

z-filter Q on a space T is minimal if and only if for every zero-set Z in Q

there is a zero-set W not in Q such that Z\J W=T.

We shall use M" and 0P to denote the z-filters Z[MP] and Z[Op],

respectively.

2. The main theorem. Under the reduction made in §1 to the case

of a completely regular Hausdorff space X, a maximal ideal of C*iX)

corresponds to a point p of BX and is denoted M*p, and the maximal

ideal MP of CiX) that corresponds to p is the unique maximal ideal
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of C(X) such that Mpf~\C*QM*p (see [3, Chapter 7]). Thus the main

theorem takes the following form.

Theorem I. Let pEPX. Every prime ideal P of C*(X) contained in

M*p is comparable with MP(~\C*. Specifically, PCMpPiC* if and only

if P contains no unit of C, while MpC\C*EP if and only if P contains

a unit of C.

Proof. Let P be any prime ideal of C*(X) with PQM*P. Choose a

minimal prime ideal Q with QQP. To prove that P and MpC\C* are

comparable, it suffices to show that QC^Mpr\C*, for then P and

MpH\C* both contain the prime ideal Q.

To show that QQMpr\C*, we first pass to the ring C(8X) by

means of the canonical isomorphism /—*•/" of C*(X) onto C(8X)

[3, 6.6(b)], and then we pass to the family of prime z-filters on

0X [3, 2.12]. According to the Gelfand-Kolmogoroff theorem [3, 7.3],

the prime ideal in C(8X) corresponding to MpC\C* is given by

(MpC\ C*Y = {g E C(13X): p E clffXZx(g\X)\.

Since Zx(g\ X) = Zf,x(g)T\X, this is a z-ideal in C(BX). We denote the

corresponding prime z-filter on fiX by 3IP; thus

91" = {Z E Z(0X)- P E cW(ZH X)}.

Also, the minimal prime ideal Qf of C(3X) corresponding to Q is a

z-ideal [3, 14.7]; we denote the corresponding minimal prime z-filter

on (3X by Q. Let ZEQ and let V be any zero-set-neighborhood of p

in &X. Since QQm%x and VE®fa we have FGQ [3, 7.15] and thus
Vr^ZEQ- Using the minimality of Q, we choose a zero-set W not in

Q such that (VC\Z)\JW = $X. If VC\Z has empty interior in f3X,

then W is dense in (3X; so W = j3X and WEQ, contradicting the

choice of W. Hence VC\Z has nonempty interior in f3X, and thus

(Vr\Z)f~\X9£0. This shows that every neighborhood of p in j3X

meets ZC\X\ hence pEclfsx(Zr\X) and ZEW. Thus QQW and it
follows that QQMpC\C*.

Now assume that P contains no unit of C. Let /£P and let V be

any zero-set-neighborhood of p in (3X. Since Z[P3] is a prime z-filter

on f3X contained in Sdlgz, we have VEZ[P»], so that VC\Z(f)

EZ[pt>] and thus also Vr\Z(f) EZ[P]. Since P contains no unit of C,

Vr\Z(f)^0. Hence pEclpxZ(f), i.e.JEMp. Thus PQMpr\C*. The
converse is immediate, and the last statement then follows from the

comparability.

Remarks. The second part of the theorem generalizes [3, 7.9]:

M*p = MpC\C* if and only if M*p contains no unit of C.
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We also note that a nonunit of C in M*p need not be contained in

MP(~\C*. For example, choose any function g in C*(R) that vanishes

at infinity and has nonempty compact zero-set. Then g is a nonunit

of C and for any pEBR-R, we have gEM*p but g^Mpf\C*.

Whenever fip)=0, Z(f)9*0, but p EchxZ(f), Theorem I shows
that although fEM*p and/ is a nonunit of C, M*p contains no prime

ideal that contains / and contains only nonunits of C.

3. z-ideals in C*. As in C, a z-ideol in C* is an ideal 7 that contains

any function that belongs to the same maximal ideals as some func-

tion in 7 (see [8, p. 30] and [3, 2.7, 4A.5]). Thus the z-ideals of C*(X)

are the ideals that correspond to z-ideals of C(BX) under the iso-

morphism/■—>/", and the family of all prime z-ideals of C*iX) is order-

isomorphic with the family of all prime z-filters on BX [3, 2.12].

Every minimal prime ideal in C is a z-ideal [3, 14.7]. Thus a prime

ideal in C is minimal if it contains no prime z-ideals. Also, if the prime

z-ideals contained in a given maximal ideal of C form a chain, then all

the prime ideals contained in that maximal ideal form a chain. By

[3, 6.6(c)], prime ideals in C* also have these properties.

4. The isomorphism theorem. In the case that B X— X is a zero-set

in BX (equivalently, that X is locally compact and cr-compact), the

prime z-ideal structure of C*iX) may be described entirely in terms

of prime z-ideals in the rings CiX) and C(BX — X). Some of the known

results on the structure of these rings will be applied in §§6 and 7 to

obtain information on the structure of C*(X).

When X is locally compact and ff-compact, there is a bounded unit

of C that belongs to M*p for every pEBX-X; thus Mpr\C*9*M*p

if and only if p^X.

Theorem II. Let X be locally compact and cr-compact, and let pEBX.

(a) The family of prime z-ideals of C*(X) contained in MpC\C* is

order-isomorphic with the family of prime z-ideals of C(X) contained

in Mp.

(b) The family of prime z-ideals of C*(X) properly containing

Mpr\C* (when p(£X) is order-isomorphic with the family of prime

z-ideals of C(BX — X) contained in Mj/X-x-

Proof. We first place the prime z-ideals contained in M*p in order-

preserving correspondence with the prime z-filters on BX contained

in 9TCjx> by means of the mapping P—*Z[P^]. Under this mapping,

we have Mpr\C*-^3lp (see §2). The order-isomorphisms will now be

obtained by means of traces and induced z-filters [10, §5].

(a)  If (P is a prime z-filter contained in 3lp, then every member of
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(P meets X. By [10, Theorem 5.2], the trace

®\X = {Zt~\X: ZE<?\

of (P on X is a prime z-filter on X. Since (PCgi?, we have <5>\ XQdVLx.

If Q is any prime z-filter on X contained in STljj, the induced prime

z-filter

Q* = {ZEZ(fSX): zr\XEQ\

is clearly contained in 3lp, and Q* | X = 6. Hence the mapping (P—*(P | X,

for (PCI3Z,J>, is onto the family of prime z-filters on X contained in

3TCX. For any (PCgy, it is immediate that <?Q((?\X)*. Now let

ZE(<?\X)t; thus there is IF^CP such that ZC\X = WC\X. Since

IFezW(|3X-X), we have ZKJ (BX - X) E<S>. But 0X-A'<$(P, so
ZE<P- Hence (? = (G>\X)* and it follows that the mapping is one-

to-one.

(b) If (P is a prime z-filter on BX properly containing 3lp, then by

[10, Theorem 5.2], the trace (P| (BX—X) is a prime z-filter on BX — X.

Since (PC3H|X, we have (P| (BX-X)CZm^x-x- H Q is any prime z-filter

on BX — X contained in Sfllpx-x. the induced z-filter

Q»=|ZG Z(/3X): Z C\ (BX - X) E Q}

is prime and Q>\ (BX-X) = Q. Since QCgngy-x, we have Q*Cgn|x-

Furthermore, the zero-set fiX — X is in Q* but clearly not in 3lp;

hence Q'CT_3T,p. It now follows from Theorem I that Q# properly con-

tains 3lp. Thus the mapping (P—kp| (0X — X), for 9lpC(P, is onto the

family of prime z-filters on BX — X contained in yflpx-x- It is clear

that (?Q((P\(8X-X))t. Now let ZE(&\ (fiX-X))*; thus there is
WE<? such that Zr\(0X-X)=Wr\(0X-X). By Theorem I the
z-ideal corresponding to (P contains a unit of C, and thus BX — XE<P-

It follows that ZE<P- Hence (P = ((p| (BX — X))* and the mapping is

one-to-one.

5. An application to P-spaces. An immediate consequence of The-

orem II is a well-known theorem on P-spaces [2, 2.7], (see also [3,

14.27] and [ll, 3.3]). A space T is an F-space if every finitely gen-

erated ideal in C(T) is principal, or, equivalently, if the prime ideals

contained in any given maximal ideal form a chain [3, 14.25]. In

part (b) of Theorem II, the prime z-ideals properly containing the

prime ideal MPC\C* form a chain; thus we have

Corollary 1 (Gillman-Henriksen). If X is locally compact and

a-compact, then fiX—X is a compact F-space.
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6. Immediate successors. It was shown in [4, p. 432] that if X is

locally compact and o--compact, and pEBX — X, then 9lp has an

immediate successor (9lp)+ in the family of prime z-filters on BX,

generated by 3lp and the zero-set BX — X, i.e.

(3lp)+ = (W, BX - X).

(This result may also be obtained from Theorem I, which shows that

a prime z-filter contained in Sm|x properly contains 9lp if and only if it

contains the zero-set BX — X.)

Furthermore, it is shown in [4, p. 433] that in the case of the count-

ably infinite discrete space N,

i%Vf = (0*N, 0N - N).

We now generalize this as follows.

Corollary 2. Let X be locally compact and a-compact, and let

PEBX-X. Then

(31V = iepgx, fix - x).

Hence the immediate successor of MpP\ C* in the family of prime z-ideals

of C*iX) consists of all functions f such that fe vanishes on a neighbor-

hood of p in BX—X.

Proof. According to the construction of the second isomorphism in

§4, we have (3lp)+= (©isx-x)7 and it is easily verified that

iOgx, fiX-X) = ie'gx-x)*.

Remark. The present paper began with the observation that

although ©|.R is usually not prime (see [10, Theorem 11.2]), the

z-filter (0^R, BR— R) is always prime, because of the above repre-

sentation as an induced z-filter and the Gillman-Henriksen theorem

of §5. This raised the question of its relation to 3lp and (2flp, BR— R).

7. Remote points and P-points. For any space X, a point p in

BX is called a remote point in BX if every member of 9TCx has non-

empty interior (see [l]). When X is a metric space, remote generalizes

isolated: a point p in X itself is a remote point in BX if and only if

it is an isolated point of X. Also, if D is a discrete space, every point

in BD is a remote point in BD. When X is a metric space with no

isolated points, a point p in BX is a remote point in BX if and only if

p is in the closure of no discrete subset of X (see  [5, §23, VIII]).
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Under the continuum hypothesis, the existence of remote points in

BR was shown in [l]. It is shown in Theorem 11.2 of [10] (the proof

given there for the real line is also valid for the case considered here)

that if X is a separable metric space and pEBX, the following are

equivalent: (a) The prime ideals contained in Mxform a chain, (b) M§

is a minimal prime ideal, (c) p is a remote point in BX.

A point p of a space P is a P-point of T if every zero-set containing

p is a neighborhood of p [3, 4L]; equivalently, if ATf is a minimal

prime ideal [3, 14.12]. Under the continuum hypothesis, there exist

P-points of BX—X whenever X is locally compact but not pseudo-

compact [3, 9M].

Assuming the continuum hypothesis, Donald Plank [12, The-

orem 6.2] has recently discovered points in BR—R that are both

remote points in BR and P-points of BR—R, points that are remote

points but not P-points, points that are P-points but not remote

points, and also points that are neither. He has also shown that each

of these four classes of points is a dense subset of BR — R of cardinal 2C.

These points provide examples for the various types of prime ideal

structure of C* described below.

Applying Theorems I and II, and Theorem 11.2 of [10] (as stated

above), we obtain the following relations between points in BX and

the prime ideal structure of C*iX). (Corollary 4 generalizes [4,

Theorem 3.10], which gives the result for the case X=N.)

Corollary 3. Let X be a locally compact, a-compact metric space,

and let p EBX. Then the following conditions are equivalent.

(a) The prime ideals of C* contained in M*p form a chain.

(b) MpC\C* is a minimal prime ideal of C*.

(c) p is a remote point in BX.

Corollary 4. Let X be locally compact and a-compact, and let

pEBX — X. Then M*p is the immediate successor of MVC\C* in the

family of prime z-ideals of C* (X) if and only if p is a P-point of BX — X.

Corollary 5. Let X be a locally compact, a-compact metric space,

and let pEBX—X. Then the family of prime z-ideals of C* contained in

M*p consists of just the two ideals M*p and MpC\C* if and only if p is

both a remote point in BX and a P-point of BX—X.
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