PRIME IDEAL STRUCTURE OF RINGS OF
BOUNDED CONTINUOUS FUNCTIONS

MARK MANDELKER

Introduction. The order structure of the family of prime ideals in
the ring C of all real-valued continuous functions on a topological
space has been extensively studied; in this paper we study the ana-
logous problem in the subring C* of bounded functions. The funda-
mental property of prime ideals in C* is the following.

MAIN THEOREM. Let M* be any maximal ideal of C* and let M be
the unique maximal ideal of C such that the prime ideal MM C* is con-
tained in M*. Then every prime ideal contained in M* is comparable
with MNC*.

The proof involves topological properties of the Stone-Cech com-
pactification 8X of a completely regular Hausdorff space X.

Of special interest are the prime z-ideals of C*. When X is a locally
compact, o-compact Hausdorff space, we show that the family of
prime z-ideals of C*(X) contained in M* is composed of two sub-
families, order-isomorphic with naturally corresponding families of
prime z-ideals in the rings C(X) and C(8X —X).

1. Preliminaries. We shall use the terminology and notation of the
Gillman-Jerison text [3]. Applying [3, Theorem 3.9], we immediately
reduce the problem of the prime ideal structure of C*(X), and its
relation to C(X), to the case that X is a completely regular Hausdorfi
space. A basic property of prime ideals in rings of functions that will
be used several times is a theorem of Kohls ([9, Theorem 2.4], see
also [3, 14.8(a), 6.6(c)]): In the ring C(X), and also in C*(X), the
prime ideals containing a given prime ideal form a chain.

The proof of the main theorem is based on Kohls’ result and the
following theorem ([10, 4.4]; cf. [7, 3.1] and [6, p. 112]): 4 prime
z-filter § on a space T is minimal if and only if for every zero-set Z in
there is a zero-set W not in Q such that ZJW=T.

We shall use 97 and ©» to denote the z-filters Z[M?] and Z[0?],
respectively.

2. The main theorem. Under the reduction made in §1 to the case
of a completely regular Hausdorff space X, a maximal ideal of C*(X)
corresponds to a point p of 8X and is denoted M*?, and the maximal
ideal M? of C(X) that corresponds to p is the unique maximal ideal
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of C(X) such that MPM\C*C M*? (see [3, Chapter 7]). Thus the main
theorem takes the following form.

TueoREM 1. Let p EBX. Every prime ideal P of C*(X) contained in
M*? is comparable with MP\C*. Specifically, PC MPMN\C* if and only
if P contains no unit of C, while MPM\C*CP if and only if P contains
a unit of C.

PRrooOF. Let P be any prime ideal of C*(X) with PC M*?, Choose a
minimal prime ideal Q with QC P. To prove that P and M?M\C* are
comparable, it suffices to show that QC MM\ C¥*, for then P and
M?M\C* both contain the prime ideal Q.

To show that QC MPMN\C*, we first pass to the ring C(3X) by
means of the canonical isomorphism f—ff of C*(X) onto C(BX)
[3, 6.6(b)], and then we pass to the family of prime sz-filters on
BX [3,2.12]. According to the Gelfand-Kolmogoroff theorem [3, 7.3],
the prime ideal in C(8X) corresponding to M?/\C* is given by

(Mr N\ C*)F = {g € C(BX): p € clexZx(g| X)}.

Since Zx(g[ X)=2Z3x(g) X, thisis a z-ideal in C(8X). We denote the
corresponding prime z-filter on X by 91?; thus

wr = {Z € ZBX): p € x(ZN X)}.

Also, the minimal prime ideal Qf of C(8X) corresponding to Q is a
z-ideal [3, 14.7]; we denote the corresponding minimal prime z-filter
on BX by Q. Let Z&@Q and let V be any zero-set-neighborhood of p
in BX. Since QC NPy and VEOx we have VEQ (3, 7.15] and thus
VNZ & Q. Using the minimality of @, we choose a zero-set W not in
@ such that (VNZ)UW=8X. If VMNZ has empty interior in 8X,
then W is dense in BX; so W=8X and WE&Q, contradicting the
choice of W. Hence V/N\Z has nonempty interior in 8X, and thus
(VNZ)NX=gf. This shows that every neighborhood of p in X
meets ZMX; hence pEclgx(ZNX) and ZENP. Thus QCIAN® and it
follows that QC MM\ C*.

Now assume that P contains no unit of C. Let fEP and let V be
any zero-set-neighborhood of p in 8X. Since Z[P#] is a prime z-filter
on BX contained in My, we have VEZ[P#], so that VNZ(f5)
€ Z[P#)] and thus also VN Z(f) EZ[P]. Since P contains no unit of C,
VNZ(f) #. Hence pEclex Z(f), i.e., fEM?p. Thus PC MPN\C*. The
converse is immediate, and the last statement then follows from the
comparability.

REMARKS. The second part of the theorem generalizes [3, 7.9]:
M*» = MP\C* if and only if M*? contains no unit of C.
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We also note that a nonunit of C in M*? need not be contained in
MPNC*. For example, choose any function g in C*(R) that vanishes
at infinity and has nonempty compact zero-set. Then g is a nonunit
of C and for any pEBR—R, we have gEM*? but g MPN\C*.
Whenever f8(p) =0, Z(f) #, but p &clgxZ(f), Theorem I shows
that although f& M*? and f is a nonunit of C, M*? contains no prime
ideal that contains f and contains only nonunits of C.

3. z-idealsin C*. Asin C, a z-tdeal in C* is an ideal I that contains
any function that belongs to the same maximal ideals as some func-
tionin I (see [8, p. 30] and [3, 2.7, 4A.5]). Thus the z-ideals of C*(X)
are the ideals that correspond to z-ideals of C(8X) under the iso-
morphism f—f¥, and the family of all prime z-ideals of C*(X) is order-
isomorphic with the family of all prime z-filters on 8X [3, 2.12].

Every minimal prime ideal in C is a z-ideal (3, 14.7]. Thus a prime
ideal in C is minimal if it contains no prime z-ideals. Also, if the prime
z-ideals contained in a given maximal ideal of C form a chain, then all
the prime ideals contained in that maximal ideal form a chain. By
[3, 6.6(c)], prime ideals in C* also have these properties.

4. The isomorphism theorem. In the case that 8 X — X is a zero-set
in BX (equivalently, that X is locally compact and o-compact), the
prime z-ideal structure of C*(X) may be described entirely in terms
of prime z-ideals in the rings C(X) and C(BX — X). Some of the known
results on the structure of these rings will be applied in §§6 and 7 to
obtain information on the structure of C*(X).

When X is locally compact and o-compact, there is a bounded unit
of C that belongs to M*? for every p&pX — X ; thus MPN\C* = M*»
if and only if pFX.

TraeoRrREM I1. Let X be locally compact and o-compact, and let p&BX.

(a) The family of prime z-ideals of C*(X) contained tn MPMC* is
order-isomorphic with the family of prime z-ideals of C(X) contained
in M.

(b) The family of prime z-ideals of C*(X) properly contwining
Mr\C* (when p&EX) is order-isomorphic with the family of prime
z-tdeals of C(BX —X) contained in NMpy_x.

Proofr. We first place the prime z-ideals contained in M*? in order-
preserving correspondence with the prime z-filters on BX contained
in M2, by means of the mapping P—Z[P#]. Under this mapping,
we have MPN\C*— I (see §2). The order-isomorphisms will now be
obtained by means of traces and induced z-filters [10, §5].

(a) If ® is a prime z-filter contained in 9?, then every member of
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® meets X. By [10, Theorem 5.2], the trace
elX={zNX: Z€E ¢}

of ® on X is a prime z-filter on X. Since ® S 91?, we have (P| Xk,
If @ is any prime z-filter on X contained in 9%, the induced prime
z-filter

of ={z€z@X): ZNX € g}

is clearly contained in 917, and Q#| X = @. Hence the mapping (?-—)(Pl X,
for ®C 917, is onto the family of prime z-filters on X contained in
N%. For any ®C 9, it is immediate that (PQ((PI X)t. Now let
ZE((PI X)t; thus there is WE® such that ZNX=WNX. Since
WCZUBX—X), we have ZUBX —X)EE®. But X —X&®, so
ZE®. Hence @ =(®| X)* and it follows that the mapping is one-
to-one.

(b) If @ is a prime z-filter on BX properly containing 9t?, then by
[10, Theorem 5.2], the trace (Pl (BX — X) is a prime z-filter on X — X.
Since ® C Mgy, we have (P| BX —X)Cmix_x. If Qisany prime z-filter
on BX — X contained in 9By _x, the induced z-filter

of = {Z € ZBX): ZN (BX — X) € @}

is prime and Q*I (BX —X)=0. Since QT Mpx_x, we have QfCIMgx.
Furthermore, the zero-set X —X is in @ but clearly not in 917;
hence @*Q 91». It now follows from Theorem I that @ properly con-
tains 9M?. Thus the mapping (P-—)(P| (BX —X), for »C@®, is onto the
family of prime z-filters on X —X contained in Mpx_x. It is clear
that (PQ((PI(BX—X))#. Now let ZG((PI (BX —X))*; thus there is
We&e@® such that ZN(BX —X)=WN(BEX —X). By Theorem I the
z-ideal corresponding to @ contains a unit of C, and thus BX —X E@.
It follows that Z&E®. Hence @ = ((PI (BX —X))* and the mapping is
one-to-one.

S. An application to F-spaces. An immediate consequence of The-
orem II is a well-known theorem on F-spaces [2, 2.7], (sce also [3,
14.27] and [11, 3.3]). A space T is an F-space if every finitely gen-
erated ideal in C(T") is principal, or, equivalently, if the prime ideals
contained in any given maximal ideal form a chain [3, 14.25]. In
part (b) of Theorem 11, the prime z-ideals properly containing the
prime ideal MPM\C* form a chain; thus we have

CoroLLARY 1 (GILLMAN-HENRIKSEN). If X s locally compuct and
ag-compact, then BX — X is a compact F-space.
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6. Immediate successors. It was shown in [4, p. 432] that if X is
locally compact and ¢-compact, and pEBX —X, then N* has an
immediate successor (91?)* in the family of prime z-filters on BX,
generated by 9? and the zero-set X — X, i.e.

()* = (97, X — X).

(This result may also be obtained from Theorem I, which shows that
a prime z-filter contained in 9NMgx properly contains N if and only if it
contains the zero-set BX —X.)

Furthermore, it is shown in [4, p. 433] that in the case of the count-
ably infinite discrete space N,

@) = (O, BN — N).

We now generalize this as follows.

COROLLARY 2. Let X be locally compact and o-compact, and let
pPEBX —X. Then

@) = (O5x, BX — X).

Hence the immediate successor of MPMC* in the family of prime z-ideals
of C¥*(X) conststs of all functions f such that & vanishes on a neighbor-
hood of p in BX —X.

PRrooF. According to the construction of the second isomorphism in
§4, we have (91?)* = (05x_x)#, and it is easily verified that

(08x, BX — X) = (Opx—x)*.

REMARK. The present paper began with the observation that
although Ofg is usually not prime (see [10, Theorem 11.2]), the
z-filter (Ofr, BR—R) is always prime, because of the above repre-
sentation as an induced z-filter and the Gillman-Henriksen theorem
of §5. This raised the question of its relation to 9t* and (917, BR —R).

7. Remote points and P-points. For any space X, a point p in
BX is called a remote point in BX if every member of 9% has non-
empty interior (see [1]). When X is a metric space, remote generalizes
isolated: a point p in X itself is a remote point in BX if and only if
it is an isolated point of X. Also, if D is a discrete space, every point
in 8D is a remote point in D. When X is a metric space with no
isolated points, a point p in 8X is a remote point in 8X if and only if
p is in the closure of no discrete subset of X (see [5, §23, VIII]).



1968] PRIME IDEAL STRUCTURE 1437

Under the continuum hypothesis, the existence of remote points in
BR was shown in [1]. It is shown in Theorem 11.2 of [10] (the proof
given there for the real line is also valid for the case considered here)
that if X is a separable meiric space and pEBRX, the following are
equivalent: (a) The prime ideals contained in M% form a chain. (b) M%
is @ minimal prime ideal. (c) p is a remote point in BX.

A point p of a space T is a P-point of T if every zero-set containing
p is a neighborhood of p [3, 4L]; equivalently, if M2 is a minimal
prime ideal [3, 14.12]. Under the continuum hypothesis, there exist
P-points of X —X whenever X is locally compact but not pseudo-
compact [3, 9M].

Assuming the continuum hypothesis, Donald Plank [12, The-
orem 6.2] has recently discovered points in BR—R that are both
remote points in SR and P-points of BR —R, points that are remote
points but not P-points, points that are P-points but not remote
points, and also points that are neither. He has also shown that each
of these four classes of points is a dense subset of SR —R of cardinal 2¢.
These points provide examples for the various types of prime ideal
structure of C* described below.

Applying Theorems I and 11, and Theorem 11.2 of [10] (as stated
above), we obtain the following relations between points in 8X and
the prime ideal structure of C*(X). (Corollary 4 generalizes [4,
Theorem 3.10], which gives the result for the case X=N.)

CoROLLARY 3. Let X be a locally compact, a-compact metric space,
and let p&BX. Then the following conditions are equivalent.

(@) The prime ideals of C* contained in M*? form a chain.

(b) M?M\C* is a minimal prime ideal of C*.

(c) p is a remote point in BX.

CoROLLARY 4. Let X be locally compact and o-compact, and let
PEBX —X. Then M*? is the immediate successor of MPM\C* in the
family of prime z-ideals of C*(X) if and only if p is a P-point of BX — X.

COROLLARY 5. Let X be a locally compact, o-compact metric space,
and let pEBX —X. Then the family of prime z-ideals of C* contained in
M*® consists of just the two ideals M*® and MPN\C* if and only if p is
both a remote point in X and a P-point of X —X.
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