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SUPPORTS OF CONTINUOUS FUNCTIONS

BY

MARK MANDELKERN)

Abstract. Gillman and Jerison have shown that when A" is a realcompact space,

every function in C(X) that belongs to all the free maximal ideals has compact

support. A space with the latter property will be called fi-compact. In this paper we

give several characterizations of /¿-compact spaces and also introduce and study a

related class of spaces, the ^-compact spaces ; these are spaces X with the property that

every function in C(X) with pseudocompact support has compact support. It is shown

that every realcompact space is ^-compact and every i/i-compact space is /¿-compact.

A family & of subsets of a space X is said to be stable if every function in C(X) is

bounded on some member of #". We show that a completely regular Hausdorff space

is realcompact if and only if every stable family of closed subsets with the finite

intersection property has nonempty intersection. We adopt this condition as the

definition of realcompactness for arbitrary (not necessarily completely regular

Hausdorff) spaces, determine some of the properties of these realcompact spaces, and

construct a realcompactification of an arbitrary space.

1. Introduction. The support of a real continuous function / on a topological

space A" is the closure of the set of points in Afat which/does not vanish. Gillman

and Jerison have shown that when A'is a realcompact space, the functions in C(X)

with compact support are precisely the functions which belong to every free maximal

ideal in C(X). This result, and other general background material, may be found

in our basic reference [GJ].

A space with the property of the Gillman-Jerison result will be said to be p-

compact. Other writers have shown that discrete spaces (Kaplansky [Ki, Theorem

28]), P-spaces (Kohls [K2, Theorem 3.9]), and spaces that admit complete uniform

structures (Robinson [Ri]) are /x-compact. Examples given in [GJ] show that not

every space is /^-compact, and not every /x-compact space is realcompact.

In this paper we show that a third class of spaces may be interpolated between

the realcompact and /x-compact. This class, of ip-compact spaces, consists of those

spaces X for which every function in C(X) with pseudocompact support has

compact support. Examples will be given to show that the three classes of spaces are

distinct. Every P-space (hence every discrete space) and every space that admits a
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complete uniform structure is </r-compact; thus the result that every ¡¡¿-compact

space is /¿-compact is a common extension of the results of Kaplansky, Kohls, and

Robinson. We also give several characterizations of/¿-compact spaces.

A characterization of realcompact spaces is obtained here which permits the

concept of realcompactness to be extended to spaces which are not necessarily

completely regular Hausdorff, and for which the main results of this paper and

many of the properties of realcompact spaces are still valid. Defining a family J^

of subsets of a space X to be stable if every function in CiX) is bounded on some

member of ¡F, we show that a space X is realcompact if and only if every stable

family of closed subsets with the finite intersection property has nonempty inter-

section. For completely regular Hausdorff spaces we show the equivalence of this

condition and the usual definition of realcompactness, while for arbitrary spaces

we adopt this condition as the definition of realcompactness. We determine some

of the properties of these realcompact spaces and construct a realcompactification

of an arbitrary space.

The author wishes to thank L. Gillman, D. G. Johnson, D. Plank, and the referee

for helpful comments concerning this paper.

2. Supports. In any topological space X, the support of a function /in CiX) is

the set Sif) = clx{x e X : fix) ^ 0}. Any subset of X that is the support of some

function in CiX) is called a support in X. An arbitrary closed set in X, even a zero-

set, need not be a support. For example, a nonempty nowhere dense set is never a

support.

We are interested in functions with compact support. A weaker condition on a

subset 5 of X is that it be pseudocompact, i.e., every function in C(S) is bounded.

Still weaker is the following condition.

Definition. A subset S of a space X is relatively pseudocompact in X if every

function in CiX) is bounded on S.

Theorem 2.1 below shows that for supports this condition is equivalent to

pseudocompactness. The equivalence does not hold for arbitrary subsets of X, not

even for closed subsets. For example, the Tychonoff plank T (see [GJ, 8.20]) is a

pseudocompact space, and hence every subset is relatively pseudocompact;

however, the right edge N (which is closed in T) is a countably infinite discrete

space, and thus not pseudocompact. In a normal space, of course, the two con-

ditions are equivalent for any closed subset.

The following theorem says that if a support S in X admits an unbounded con-

tinuous function, then some unbounded continuous function on S may be extended

continuously over X.

Theorem 2.1. In any topological space X, any relatively pseudocompact support

is pseudocompact.

Proof. Let S be a support in Xthat is not pseudocompact; thus S=c\x {X—Z)

for some zero-set Z in X, and there is a function h ̂  1 in C(5) that is unbounded,
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hence unbounded on X—Z. It follows from [GJ, 1.20] that X—Z contains a

C-embedded subset D of Son which h is unbounded, and thus from [GJ, 1.18] that

D is completely separated from the zero-set W=Z n Sin S; hence we may choose

geC(S) with^ = 0 on Dandg=l on W. Put/=(1/A) Vg on Sand/=1 on X-S.

Clearly fe C(X), f>0, and l/f is unbounded on D. Thus S is not relatively

pseudocompact.

Corollary 1. Any support in a pseudocompact space is also pseudocompact.

Corollary 2. For any topological space X, the family of all real-valued con-

tinuous functions with pseudocompact support is an ideal (possibly improper) in

C(X); it is all ofC(X) if and only if X is pseudocompact.

When A' is a completely regular Hausdorff space, it is clear that a subset 5 of X

is relatively pseudocompact if and only if cluX 5 is compact, where vXis the Hewitt

realcompactification of X (see [GJ, 8E]). Thus, in the case of a completely regular

Hausdorff space, Theorem 2.1 follows from a result of A. W. Hager and D. G.

Johnson [Hi, p. 96], [C1; Theorem 4.1], which shows, in fact, that in this case, if

the closure of any open set is relatively pseudocompact, then it is pseudocompact.

In the case of a support, the proof given in [Cj] applies to an arbitrary topological

space; the proof given above, however, seems simpler. Also, the result as stated

above for supports is sufficient for use in the proof of Theorem 4.4 in [CJ. Other

properties of relatively pseudocompact sets may be found in [N2],

Theorem 2.2. Let Xbe any topological space. Every function in C(X) that belongs

to all the free maximal ideals has pseudocompact support.

Proof. Let/e C(X) with nonpseudocompact support S. Thus S is not relatively

pseudocompact and X- Z(f) contains a C-embedded subset D of X on which some

g e C(X) is unbounded. Since D is completely separated from Z(f), there is a

zero-set Win X with Z)s Wand Wn Z(f)= 0. For every heJV, the zero-set Zn,

of points in X at which | g | ^ n, meets W, and thus there is a z-ultrafilter JÍ on X

containing If and all the sets Zn. Obviously P|n Zn= 0 ; hence JÍ is free and/does

not belong to the corresponding free maximal ideal.

In the case of a completely regular Hausdorff space, this result is essentially the

content of the lemma in [R2]. In fact, in this case the proof may be simplified by

noting that W is not compact, and hence belongs to some free z-ultrafilter, by the

following result of [GJ, 4.10].

(a) A zero-set in a completely regular Hausdorff space is compact if and only if

it belongs to no free z-filter.

The proof above actually provides the following analogue for arbitrary spaces of

the sufficiency in (a). A zero-set that belongs to no free z-filter is relatively pseudo-

compact. The converse of this result, however, is not true; for example, in any

pseudocompact, noncompact, completely regular Hausdorff space X, the set X

itself is a relatively pseudocompact zero-set that does belong to a free z-filter.
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3. «/«-compact spaces. It is easily seen (see, e.g., [GJ, 7E]) that every function in

CiX) with compact support belongs to every free maximal ideal in CiX). When the

converse holds we shall call X /¿-compact. Thus

Definition. A space X is p-compact if any function in CiX) that belongs to all

the free /¿aximal ideals has compact support.

In [GJ, 8.19] it is shown that every realcompact space is /¿-compact, and a

counterexample to the converse is given. We show below that between these classes

of spaces we may interpolate the following third class.

Definition. A space X is ¡¡¡-compact if every function in CiX) with «/«eudocom-

pact support has compact support.

Theorem 3.1. For any space X, each of the following conditions implies the next.

The converses are not true.

(1) X is realcompact.

(2) X is ¡¡¡-compact.

(3) X is p.-compact.

Proof. Every closed subspace of a realcompact space is realcompact [GJ, 8.10],

and any pseudocompact realcompact space is compact [GJ, 5H]. Hence (1) implies

(2). Theorem 2.2 shows that (2) implies (3). The counterexamples to the converses

are given below.

A 5-space is a completely regular Hausdorff space in which every G6 is open.

Every discrete space is a P-space, but not conversely; see [GJ, 4JKN].

Theorem 3.2. Every P-space and every space that admits a complete uniform

structure is ¡¡¡-compact.

Proof. Every subspace of a P-space is a P-space, and every pseudocompact

P-space is finite [GJ, 4K].

Every closed subspace of a complete space is complete, and every pseudocompact

complete space is compact [GJ, 15CQ].

If X is metrizable, then since it admits a complete structure [GJ, 15.24], it is

«/«-compact. However, this also follows directly from the fact that any pseudo-

compact metrizable space is compact.

Since X itself is always a support, the following is immediate.

Theorem 3.3. Every pseudocompact ¡¡¡-compact space is compact.

Example 1. The P-space X constructed in [GJ, 9L] is not realcompact; hence

not every «/«-compact space is realcompact. Since X is of nonmeasurable cardinal,

Shirota's Theorem [GJ, 15.20] shows that X does not admit a complete uniform

structure. Thus not every «/«-compact space admits a complete uniform structure.

Hence, if measurable cardinals exist, the class of spaces that admit complete

structures lies properly between the classes of realcompact spaces and «/«-compact

spaces.
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Example 2. The space of countable ordinals is /x-compact, as noted in [GJ, 8.19],

but since it is pseudocompact (and not compact), it is not «/"-compact; hence not

every /x-compact space is ¡/«-compact. This also shows that a pseudocompact /x-

compact space need not be compact (cf. Theorem 3.3).

4. /x-compact spaces. In this section we give a few characterizations of p-

compact spaces. One of the characterizations involves the following concept. When

Afis a completely regular Hausdorff space, a subset A of the Stone-Cech compactifi-

cation ßX is said to be round if whenever cLjx Z contains A, where Z g Z(X), then

clgxZ is a neighborhood of A (see [M]).

Theorem 4.1. A subset A of ßX is round if and only if, for any Z e Z(X),

int.4 (chjx Zn A) = intÍX clÍX Z n A.

Proof. Necessity. Let p e int,, (clÍX Z n A). Choose W e Z(X) such that

peA-clßX WcclßXZnA. Thus AcdßXZ u dßX W=clßX(Z u W), and by

hypothesis we have A^intßX clÍX (Z u W). Hence

/? eint„ clÍX (ZulC)n (ßA'-cW W) s clÄXZ,

so p e intßX clßXZ. Thus int¿ (clflXZ n A)^intßX c\ßxZ n ^4. The opposite in-

clusion is immediate.

Sufficiency. Let AcclßXZ for some ZeZ(X). Then ,4 = int^ (clsx Z n .4)

= intÖX clßX Z C\ A and hence cliX Z is a neighborhood of ^4.

Theorem 4.2. For an,y completely regular Hausdorff space X, the following are

equivalent.

(1) X is p-compact.

(2) ßX— X is a round subset ofßX.

(3) For any Z e Z(A"), intiX_x (clÄX Z- A') = intÄX cl^ Z- X.

(4) Every cozero-set with noncompact closure contains a noncompact zero-set.

(5) Any function in C(X) that belongs to all the free maximal ideals has real-

compact support.

Proof. The equivalence of (1) and (2) was noted in [M, Theorem 5.1]. The

equivalence of (2) and (3) is a special case of Theorem 4.1. A function belongs to

every free maximal ideal if and only if its zero-set meets every noncompact zero-set

[GJ, 4E.2]; hence (1) and (4) are equivalent. The equivalence of (1) and (5) follows

from Theorem 2.2.

Condition (3) cannot be extended by replacing the sets cliX Z, for Z e Z(X)

(which form a base for the closed sets in ßX) by arbitrary closed sets in ßX. For

example, the condition does not hold for the closed subset /8R — R of ß'R.

The fact that (1) implies (3), and the method used in the proof of Theorem 4.1,

is due to Donald Plank [P, 5.11.
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Other characterizations of/¿-compact spaces may be found in [R2]. The condition

(5) above is essentially condition (2) of [R2].

It was noted in §3 that a metrizable space is ¡/«-compact (and hence /¿-compact).

That it is /¿-compact also follows directly from condition (4) of Theorem 4.2: if U

is open and clx U is noncompact, then c\x U contains a sequence {xn}n with no

convergent subsequence; thus a set {yn : n^l} of points of U chosen so that

piyn, xn)^ \/n is a noncompact closed set in X.

In Example 2 we used the fact, noted in [GJ, 8.19], that the space W of countable

ordinals is /¿-compact. This is also easily seen by using condition (2) of Theorem

4.2. If /g C(W) and wx g cl^w Zif), then / must vanish on a tail and hence

cl^w Zif) is a neighborhood of wx. Thus {cu1}=)8W —W is a round subset of jSW.

We saw in Example 2 that pseudocompactness and /¿-compactnesss together do

not imply compactness. However, in the following special case, the implication

does hold.

Theorem 4.3. Let Y be any locally compact, a-compact metrizable space ie.g.

the line), and let Yc XzßY. If X is pseudocompact and p-compact, then X=ßY.

Proof. Let Xbe /¿-compact and X^ßY. Since Y is a cozero-set in ßY, it is also a

cozero-set in X. Choose a noncompact zero-set Z in X with Zs Y. Since Y is

metrizable, Z is C*-embedded in Y and is not pseudocompact. Hence Z is C*-

embedded in Y and since it is a zero-set in X, it is C-embedded in X. Hence Zis not

pseudocompact.

5. Realcompact spaces. Heretofore, these spaces have been defined only in the

context of completely regular Hausdorff spaces—see [GJ, 5.9 and 8.4].

By means of the characterization of realcompact spaces given in Theorem 5.1

below, we may (consistently) define realcompactness for arbitrary topological

spaces. Under the definition given, the properties of realcompact spaces needed for

the proof of Theorem 3.1 remain valid, and hence Theorem 3.1 is true in the general

case. The definitions of «/«-compact and /¿-compact spaces apply to the general case

as given, as does characterization (5) of /¿-compact spaces given in Theorem 4.2.

Definition. We shall say that a family F of subsets of a space X is stable if

every function /in CiX) is bounded on some member of J5".

Theorem 5.1. A completely regular Hausdorff space is realcompact if and only

if every stable family of closed subsets with the finite intersection property has

nonempty intersection.

Proof. Let X be realcompact and suppose !F is a family of closed subsets of X

with the finite intersection property, but with empty intersection. Then the family

{clix F : Fe ¿F} of closed subsets of ßX has the finite intersection property, and

we may choose p e ßX with p e clÄX F for all FeF.lt follows that p e ßX- X and

thus there isfe CiX) with/*(j?) = oo. Thus/is unbounded on each member of F,

and hence F is not stable.
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Now assume that X is not realcompact. Thus there is p e ßX- X such that/*(/>)

is finite for a\\fe CiX). Let J( be the (free) z-ultrafilter on X that converges to p;

it consists of all zero-sets Z in X such that p e c\ex Z. Thus Jt is a family of closed

subsets of X with the finite intersection property and empty intersection. Let

fe CiX). Since/*(/?) is finite,/* is bounded on some zero-set neighborhood W oí

p in ßX. Since p e clfiX ( W n X), we have W n X e JÍ with / bounded on W n X.

It follows that M is stable.

This result may perhaps be considered a partial reply to Hewitt's comment:

" These spaces, which we have called g-spaces, are characterized by no topological

property so simple as bicompactness; indeed, their description may be considered

somewhat recondite," [H5, p. 85]. There are of course other characterizations of a

realcompact space, but this characterization, when used as a definition in the

general case, allows us to extend Theorem 3.1. Specifically, the condition of this

characterization is hereditary for closed subspaces, and, in the presence of pseudo-

compactness, implies compactness. Other characterizations of realcompact spaces

are found in [GJ], [H3], [H5], [Nx], and [W]. An internal characterization has

recently been found by Douglas Harris [H2]. The author wishes to thank Professor

M. C. Rayburn for pointing out that a special form of Theorem 5.1 was observed

in [F].

The characterization given in Theorem 5.1 permits the following extension of the

class of (completely regular Hausdorff) realcompact spaces.

Definition. A topological space AMs realcompact if every stable family of closed

subsets with the finite intersection property has nonempty intersection.

The following results extend some of the well-known properties of realcompact

completely regular Hausdorff spaces to the general case. In applying the terms

"compact" and "regular" to a space, we do not imply that the space is Hausdorff.

Theorem 5.2. (a) Any compact space is realcompact.

(b) A pseudocompact realcompact space is compact.

(c) Every closed subspace of a realcompact space is realcompact.

id) Any product of realcompact spaces is realcompact.

Proof. The first three statements are immediate.

For the product theorem, we adapt the proof given in [GJ, 8.12]. Let X=\~[a Xa,

where each space Xa is realcompact, and let J^ be a maximal stable family of closed

subsets of X with the finite intersection property. For each a, let Fa be the family of

all closed subsets G of Xa such that i«-a*-[G] g J*". If g e CiXa), then g°Trae CiX);

choose FeF and a closed bounded subset H of the line such that Fe ig ° «•,)*" [H].

Then ^„-[^[Z/]] g J5", so g is bounded on g"[H] e J^. Thus Fa is a stable family

of closed subsets of Xa with the finite intersection property. For each a, choose

x«e[\Fa, and let x denote the point (xa) of X. Let F=\Jlirat'-[Gl] be a basic

closed set with Fe!F, where G{ is a closed set in Xa¡, l ¿ i£». By the maximality
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of F, one of the sets trttf [G¡] belongs to F; hence Gt e Fa¡, so xUi e G¡ and xeF.

Hence f) F^ 0.

For arbitrary spaces we have the following weakened form of [GJ, 8.16].

Theorem 5.3. A space which is the union of a compact subspace anda C-embedded

realcompact subspace is realcompact.

Proof. Let X= K u Y with K compact and Y realcompact and C-embedded in

X. Let F be a stable family of closed subsets of X with the finite intersection

property. We may assume that F is closed under finite intersections. If every

member of F meets K, then clearly F has nonempty intersection. If some member

of F does not meet K, then @ = {F n Y : Fe F} is a family of closed subsets of

Y with the finite intersection property. Clearly â? is stable; hence f) &^ 0 and

also f)F=¿0.

The following result extends [GJ, 8A]. Another extension will be given in Corol-

lary 6.2.

Theorem 5.4. A C-embedded realcompact subspace of a Hausdorff space is closed.

Proof. Let AT be a C-embedded subspace of a Hausdorff space T that is not closed

and let /? be a limit point of X not in X. Let F be the family of all (closed) subsets

of X of the form F n X, where F is a closed neighborhood of/? in T. It follows that

F is a stable family with the finite intersection property, but empty intersection,

and hence X is not realcompact.

Let X be any space, and let Xcr be the completely regular Hausdorff space

obtained in [GJ, 3.9], with C(Xcr)xC(X).

Theorem 5.5. If X is realcompact, then XCT is also realcompact. The converse is

not true.

Proof. Let J5" be a stable family of closed subsets of XCT with the finite inter-

section property. Put @ = {t~[F] : FeF}, where t.X^Xct is the canonical

mapping. Clearly S? is a stable family of closed subsets of X with the finite inter-

section property; hence (~) &=£ 0 and thus f] F^ 0. Hence XCT is realcompact.

Example 3. For a counterexample to the converse, let X be the regular space of

[H4] on which every real continuous function is constant. It is shown in [H4] that

X is Tx, hence not compact, and thus since it is pseudocompact, it is not realcom-

pact. However, Xcr consists of a single point, and is thus realcompact.

The failure of the converse is not to be lamented. It is desired that Theorem 3.1

be true in the general case, and clearly the space X of this example is not «/«-compact,

and hence must not be realcompact under any definition we might adopt. Since

C(X)xC(Xcr), no definition of realcompactness that preserves Theorem 3.1 can

be algebraically invariant.

A different extension of realcompactness has been given in [D], but under which

some of the properties of realcompact spaces, for example Theorem 3.1, are lost.
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6. The realcompactification of an arbitrary space. In this section we obtain a

generalization of the Hewitt realcompactification vX of a completely regular

Hausdorff space (see [GJ, Chapter 8]), except that we are able to prove extend-

ability only for continuous mappings into regular realcompact spaces.

Theorem 6.1. Every topological space X has a realcompactification vX, which is

a realcompact space in which X is dense and C-embedded. Every continuous mapping

from X into any regular realcompact space may be extended continuously over vX.

The space X itself is realcompact if and only if X=vX.

Proof. We shall omit those details which are the same as steps in the proof of

the existence of the Stone-Cech compactification of a completely regular Hausdorff

space given in [GJ, Chapter 6], on which this proof is patterned.

For any x e A', we shall let Fx denote the family of all closed subsets of X that

contain x. Clearly Fx is stable. (Note that X is a A-space if and only if the corres-

pondence x -> Fx is one-one. Also, a A-space is a A-space if and only if each Fx

is a maximal family of closed subsets with the finite intersection property.)

Let vX— X be an index set for the collection {Fp : p e vX— X} of all maximal

stable families of closed subsets of X with the finite intersection property and

empty intersection.

For any closed set FçX, put F={pevX : FeF"}; topologize vX by taking

these sets Fas a base for the closed sets. We have Fn Af=Fand F=cluX F; thus

AT is a subspace of vX and is dense in vX.

Let t: X-> Y be a continuous mapping, with Y regular and realcompact. For

any /? e vX, let @" be the family of all closed subsets G of F such that t" [G] e Fv.

Let g e C(Y); then g ° t e C(X), so g » t is bounded on some member F of F".

Thus Fs(g o t)~[H], where His some closed bounded subset of the line. It follows

that T~[g"[H]] eFp and hence g"[H] e (SV; thus g is bounded on a member of

^p. Hence ^p is a stable family of closed subsets of Y with the finite intersection

property. Choose y e f] &p and put r°p=y (if p e X, then t/? e (~) <&" and we

choose y = rp; thus t° extends t).

To establish the continuity of t° at a point p e vX, let V be any closed neighbor-

hood of t0/? in Y. Put T= 7-int V, A = t-[V], B = t^[T], and U=vX-B. Since

T°p $ T, we have T$ &p, so B$FP and U is a neighborhood of/? in vX. We have

VUT= Y, solu£=t)Iand UqI. Now if qe U, then qeland A eFq; hence

Kef and r°q e V. Hence t°[£/]£ V, and t° is continuous at/?.

To show that uA' is realcompact, consider any stable family ^ of closed subsets

of vX with the finite intersection property. Let F be the family of all closed subsets

F of X such that F contains some member of 'S. Let/e C(X) and choose G eS

such that /" is bounded on G. Say |/0|<n on G. Put A={xeR : \x\£n},

B={xeR : \x\ ̂ n}, and F=f~[A]. Let/? e G and suppose F $FP. Since A u5=R,

we have F uf~[B] = X, and thus/-[5] eF". It follows from the definition of the

extension/" that/"(/?) e B, contradicting the choice of/? and n. Hence FeFp, so
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peF. Thus G<=:F, and FeF. Since/is bounded on F, it follows that F is a stable

family of closed subsets of X with the finite intersection property; hence J^sFv

for some p e v X and we have p e F for every FeF. Since the sets F form a base for

the closed subsets of vX, we have p e{~\<S. Hence vX is realcompact.

The following result extends the characterization given in [GJ, 8A].

Corollary 6.2. A regular Hausdorff space is realcompact if and only if it is

dense and C-embedded in no other Hausdorff space.

Proof. The necessity is a special case of Theorem 5.4. Conversely, if Xis regular

and Hausdorff but not realcompact, then for any p e vX— X, the space X u {p} is

Hausdorff.

Example 4. There is no possibility of finding a Hausdorff realcompactification

for an arbitrary Hausdorff space X, even when X is regular. For, let X be Hewitt's

space discussed in Example 3. If X is dense in some Hausdorff realcompact space

T, then every real continuous function on T is also constant ; hence T is pseudo-

compact, hence compact, and the subspace Zis completely regular, which is absurd.
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