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Abstrat. The Sylvester-Gallai Theorem, stated as a problem by James

Joseph Sylvester in 1893, asserts that for any �nite, nonollinear set of

points on a plane, there exists a line passing through exatly two points of

the set. First, it is shown that for the real plane R
2
the theorem is on-

strutively invalid. Then, a well-known lassial proof is examined from a

onstrutive standpoint, loating the nononstrutivities. Finally, a on-

strutive version of the theorem is established for the plane R
2
; this reveals

the hidden onstrutive ontent of the lassial theorem. The onstrutive

methods used are those proposed by Errett Bishop.
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1. Introdution

The Sylvester-Gallai Theorem states that for any �nite, nonollinear set of points on a

plane, there exists a line passing through exatly two points of the set.

The history of this problem is itself problemati. The notion, that Gallai was the �rst

to prove the theorem, appears to stem from the submission of the problem to the Amerian

Mathematial Monthly in 1943 by P. Erd®s [Erd43℄, while unaware of the 1893 statement of

the problem by J. J. Sylvester [Syl93℄. When a solution by R. Steinberg [Ste44℄ was published

in the Monthly in 1944, an Editorial Note stated that Erd®s had �enlosed with the problem

an outline of Grünwald's [Gallai's℄ solution�. This referene to a pre-1944 proof by Gallai,

albeit an unpublished outline, appears to be the basis for the designation Sylvester-Gallai

Theorem. This attribution reurs in a 1982 statement by Erd®s [Erd82, p.208℄, �In 1933 . . . I

told this problem to Gallai who very soon found an ingenious proof �; Gallai's proof, it seems,

was not published. Along with Steinberg's 1944 solution, the Monthly noted that solutions

were also reeived from R. C. Buk and N. E. Steenrod. The earliest known published proof

of the theorem, appearing in 1941, is due to E. Melhior [Mel41℄. In the present paper we

aede to ommon usage, refraining from use of the designation Sylvester-Melhior Theorem.
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There have been many di�erent versions and proofs for this theorem. V. Pambuian

[Pam09℄, onduts reverse analyses of three proofs of the theorem, leading to three di�erent

and inompatible axiom systems. J. von Plato [Pla05℄ shows that the theorem holds intu-

itionistially for sets of up to six points in a purely inidene-geometri setting, and for up

to seven points in an ordered geometri setting. See also [KelMos58, Wil68, Cha70, Lin88,

BorMos90, Chv04℄.

We determine the onstrutive ontent of this theorem for the real plane R
2
. First, we

�nd that the theorem is onstrutively invalid. Then we examine L. M. Kelly's 1948 proof,
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loating the nononstrutivities. Finally, adapting Kelly's method, adding an hypothesis,

and using stritly onstrutive methods, we obtain a onstrutive version of the theorem.

2. Construtive methods

The modern onstrutivist program began with L. E. J. Brouwer (1881-1966) [Bro08℄;

reent work, using the stritest methods, follows the work of Errett Bishop (1928-1983). A

large portion of analysis is onstrutivized by Bishop in Foundations of Construtive Analysis

[B67℄; this treatise also serves as a guide for onstrutive work in other �elds. This variety of

onstrutivism does not form a separate branh of mathematis, nor is it a branh of logi;

it is intended as an enhaned approah for all of mathematis.

For the distintive harateristis of Bishop-type onstrutivism, as opposed to intuition-

ism or reursive funtion theory, see [BR87℄. Avoiding the Law of Exluded Middle (LEM),

onstrutive mathematis is a generalization of lassial mathematis, just as group theory,

a generalization of abelian group theory, avoids the ommutative law.
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The initial phase of this program involves the rebuilding of lassial theories, using only

onstrutive methods. The entire body of lassial mathematis is viewed as a wellspring of

theories waiting to be onstrutivized.

Every theorem proved with [nononstrutive℄ methods presents a hallenge: to

�nd a onstrutive version, and to give it a onstrutive proof.

- Errett Bishop [B67, p. x℄

To larify the onstrutive methods used here, we give examples of familiar properties of

the real numbers that are onstrutively invalid, and also properties that are onstrutively

valid.
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The following lassial properties of a real number α are onstrutively invalid :

(i) Either α < 0 or α = 0 or α > 0.
(ii) If ¬(α = 0), then α 6= 0.

Bishop onstruts the real numbers using Cauhy sequenes. Construtively, the relation

α 6= 0 does not refer to negation, but is given a strong a�rmative de�nition; one must

onstrut an integer n suh that 1/n < |α|.
Among the resulting onstrutively valid properties of the reals are the following:

(a) For any real number α, if ¬(α 6= 0), then α = 0.
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Kelly's proof may be found in [Cox48℄ or [Cox61, pp. 65-66℄.
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Construtive methods are desribed fully in [B67, B73, BB85℄; see also [R82, BriMin84, M85, R99℄.
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For more details, and other onstrutive properties of the real number system, see [B67, BB85, BV06℄.
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(b) For any real number α, if ¬(α > 0), then α ≤ 0; if ¬(α < 0), then α ≥ 0.
() Let α and β be any real numbers, with α < β. For any real number x, either

x > α or x < β.
(d) Let α and β be any real numbers, with α 6= β. For any real number x, either

x 6= α or x 6= β.
Property (), known as the Construtive Dihotomy Priniple, serves as a onstrutive

substitute for the lassial Trihotomy Property, whih is onstrutively invalid. Property

(d), whih follows from (), is alled otransitivity; it is the lassial ontrapositive of the

transitive relation for equality.

Points A and B on the real plane R
2
are distint, written A 6= B, if the distane between

them is positive. Points inherit properties from their oördinates; thus we have otransitivity

for points:

(e) Let A and B be any points on the real plane R
2
, with A 6= B. For any point X,

either X 6= A or X 6= B.

The ondition P lies on l, written P ∈ l, means that the distane ρ(P, l), from the point

P to the line l, is 0, while P lies outside l, written P /∈ l, means that the distane is positive.

The maximum and minimum of two real numbers are easily de�ned, using Cauhy se-

quenes. For any real number α, we de�ne α+ = max{α, 0} and α− = max{−α, 0}. At-

tempting to onstrut the maximum or minimum of an arbitrary set of real numbers may,

however, lead to interesting ompliations. We say that a set is �nite if its elements may be

listed, {a1, a2, ..., an}, with n ≥ 1, but not neessarily distintly.5 A �nite set of real numbers

has a minimum, but an arbitrary nonvoid subset of a �nite set of real numbers need not

have a onstrutive minimum. Even when a minimum does exist, it need not be attained by

an element in the set. These nononstrutivities will be established in Setion 5.

3. Construtively invalid statements

Brouwerian ounterexamples display the nononstrutivities in a lassial theory, indi-

ating feasible diretions for onstrutive work. To illustrate the method, we give �rst an

informal example on the plane R
2
.

Example. If, for the real plane R
2
, there is a proof of the statement

For any point P and any line l, either P lies on l, or P lies outside l,

then we have a method that will either prove the Goldbah Conjeture, or onstrut a

ounterexample.

Proof. Using a simple �nite routine, onstrut a sequene {an}n≥2 suh that an = 0 if 2n is

the sum of two primes, and an = 1 if it is not. Now apply the statement in question to the

point P = (0,Σan/n
2), with the x-axis as the line l. If P lies on l, then we have proved the

Goldbah Conjeture, while if P lies outside l, then we have onstruted a ounterexample.
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Several di�erent de�nitions and variations of the onept �nite may be found in the onstrutive litera-

ture. The de�nition here is lose to the usual meaning of the term.
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For this reason, suh statements are said to be onstrutively invalid. If the Goldbah

question is settled someday, then other famous problems may still be �solved� in this way. The

example above will be applied in Setion 5, loating one of the substantial nononstrutivities

in a lassial proof of the Sylvester-Gallai Theorem.

A Brouwerian ounterexample is a proof that a given statement implies an omnisiene

priniple. In turn, an omnisiene priniple would imply solutions or signi�ant informa-

tion for a large number of well-known unsolved problems. This method was introdued by

Brouwer [Bro08℄ to demonstrate that reliane on the Law of Exluded Middle inhibits math-

ematis from attaining its full signi�ane. The omnisiene priniples are speial ases of

LEM.

Omnisiene priniples are formulated in terms of binary sequenes. The zeros and ones

may represent the results of a searh for a solution to a spei� problem, as in the example

above. These priniples also have equivalent statements in terms of real numbers. The fol-

lowing omnisiene priniples will be used here:

Limited priniple of omnisiene (LPO). For any binary sequene {an}, either an = 0
for all n, or there exists an integer n suh that an = 1. Equivalently, For any real number

α with α ≥ 0, either α = 0 or α > 0.

Lesser limited priniple of omnisiene (LLPO). For any binary sequene {an}, either
the �rst integer n suh that an = 1 (if one exists) is even, or it is odd. Equivalently, For

any real number α, either α ≤ 0 or α ≥ 0.

A statement is onsidered onstrutively invalid if it implies an omnisiene priniple.

The example above, with slight modi�ation, shows that the statement in question implies

LPO; thus the statement is onstrutively invalid. When omnisiene priniples are involved,

there is no need to mention a spei� unsolved problem. LPO would solve a great number

of unsolved problems; LLPO would provide unlikely partial solutions.
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4. Brouwerian ounterexample

This will demonstrate that the Sylvester-Gallai Theorem is onstrutively invalid for the

plane R
2
.

Example. The statement,

For any �nite, nonollinear set of points S on the real plane R
2
, there exists a

line that passes through exatly two points of S ,

is onstrutively invalid; the statement implies LLPO.
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For more details onerning Brouwerian ounterexamples, and other omnisiene priniples, see [B73,

R02, M89, BV06℄.
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Figure 1. An omnisient view of the Brouwerian ounterexample. Constru-

tively, we do not know whether the real number α is < 0, or = 0, or > 0;
the lassial Trihotomy Property is onstrutively invalid. Sine we do not

know about α, we annot speify a line that passes through exatly two points.

Proof. Let α be any real number; either |α| > 0 or |α| < 10−20
. Under the �rst ondition,

either α < 0 or α > 0, so we already have the required onlusion; thus we may assume

the seond ondition. (Although the ondition |α| < 1/2 would su�e to keep the points

in view, the ondition hosen may bring to mind some unsolved problem in number theory

that has been heked a long way out.)

De�ne S = {P,Q,R, S, T}, where P = (−1, 0), Q = (1, 0), R = (0, 1), S = (−1 +
|α|, α+), T = (1− |α|, α+). By hypothesis, there exists a line l as spei�ed in the statement;

there are at most ten possibilities for l.
Consider �rst the ase in whih l is one of the four lines RP, RQ, RS, RT, and suppose

that α > 0. Then α+ = |α| > 0, so the point S lies on the line RP , distint from both points

R and P . Similarly, the point T lies on the line RQ. Thus l ontains three distint points
of S , a ontradition. It follows that α ≤ 0.

Now onsider the ase in whih l is one of the six lines PQ, PS, PT, QS, QT, ST, and

suppose that α < 0. Then |α| > 0, while α+ = 0, so the points S and T lie on the line PQ,
distint from eah other and from P and Q. Thus l ontains four distint points of S , a

ontradition. It follows that α ≥ 0.
Thus the statement implies LLPO.

5. Classial proof

To obtain a onstrutive version of the Sylvester-Gallai Theorem, we �rst subjet Kelly's

lassial proof to examination from a onstrutive viewpoint, loating the onstrutively

invalid steps. Kelly's 1948 proof for the plane R
2
is repeated below in brief form (it appears

in [Cox48℄ and [Cox61, pp. 65-66℄). We follow Bishop's suggestion, that theorems and proofs

dependent on the Law of Exluded Middle be labeled as suh.

Proof. [LEM℄ (L. M. Kelly) Let S be a �nite, nonollinear set of points on the real plane

R
2
, onsider all the lines that join two distint points of S , and onsider the distanes from

eah point of S to eah of these lines. The set of all those distanes that are positive has a

minimum d, attained by at least one line l and one point P . Let E denote the foot of the

perpendiular dropped from the point P onto the line l; the segment PE then has length d.
If there are three distint points of S that lie on l, then two of these must lie on the same
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side of E. Denote these two points by U and V , with U loser to E (possibly at E). Let

h be the distane from the point U to the line PV ; then h is one of the positive distanes

onsidered in determining the minimum d. However, it is apparent that h is less than d, a
ontradition. Thus l ontains exatly two points of S .

We enounter several onstrutive obstales in this remarkable proof. First, there is a

problem in joining points to form the onneting lines, sine we annot determine whih

pairs of given points are distint; onsidering distanes, this would diretly involve LPO.

If we manage to lear the �rst obstale, there is then the problem of determining whih

points of S are at a positive distane from whih of the onneting lines; suh a determination

was shown to be onstrutively invalid by the example in Setion 3. Thus we are unable to

list the positive distanes as a �nite set of real numbers, in order to onstrut a minimum.

Although the set of positive distanes may be a nonvoid subset of a �nite set of real

numbers, it would be onstrutively invalid to laim that suh a set has a minimum. For a

Brouwerian ounterexample, assume that suh minimums exist, let α be a real number with

α ≥ 0, and de�ne S = {α, 1}. Either α > 0 or α < 1/2; it su�es to assume the latter

ondition. De�ne T = {x ∈ S : x > 0}; then T is a nonvoid subset of the �nite set S, so by
hypothesis we may de�ne m = minT . Either m > 1/2 or m < 1. In the �rst ase, ¬(α > 0),
so α = 0. In the seond ase, sine m may be losely approximated by elements of T , it
follows that α ∈ T , so α > 0. Thus LPO results. In the proof above, if we annot show that

the set of positive distanes is �nite, then we annot onstrut a minimum.

Assuming the resolution of the above di�ulties, there remains a problem with the sele-

tion of the speial point-line pair. Even when the minimum of a set of real numbers an be

onstruted, still we annot say that this minimum is attained by an element of the set. For

a Brouwerian ounterexample, assume that minimums are attained, let α be a real number,

de�ne S = {α+, α−}, and de�ne m = minS. By hypothesis, either m = α+
, and then

¬(α > 0), so α ≤ 0, or m = α−
, and then ¬(α < 0), so α ≥ 0. Thus LLPO results. Thus a

minimum is, in general, not attained; we may only onstrut elements of the set arbitrarily

lose to the minimum. In the proof above, seleting the point P and the line l, for only an

approximation e to the minimum d, would disturb the measurements, sine then h, while
less than e, would not be known to be less than d.

The �nal onstrutive obstale onerns the situation in whih three points of the set S

are assumed to lie on the seleted line l; the proof must deide on whih side of the foot E
eah point lies. This amounts to deiding on whih side of zero an arbitrary real number

lies, and this is preisely the nononstrutive omnisiene priniple LLPO.

In adapting Kelly's proof, these onstrutive obstales will be overome by adding an

hypothesis, by seleting a su�iently lose approximation to the minimum distane, and by

using onstrutive properties of the real numbers.

6. Construtive version

Sine the Sylvester-Gallai Theorem is onstrutively invalid, a onstrutive version must

be restrited to a set of points with additional struture. A set is disrete if any two elements

are either equal or distint. A set of points S is linearly disrete if for any point P in S ,

and for any line l onneting two distint points of S , either P lies on l, or P lies outside l.
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For any set of points, these two onditions follow from LEM; thus the onstrutive version

of the theorem will be lassially equivalent to the traditional version. Although we require

both additional onditions, it will su�e to speify only the seond, as the lemma below will

demonstrate.

A strong de�nition will be used for a nonollinear set of points: the set ontains distint

points P,Q,R suh that P lies outside the line QR. The de�nition of �nite set will be as

given in Setion 2.

Lemma. If a nonollinear set S of points on the real plane R
2
is linearly disrete, then it

is disrete.

Proof. Let A and B be any points of S .

Selet three distint, nonollinear points C1, C2, C3 of S . By otransitivity, one of these,

all it P , is distint from A. The point B either lies outside the line AP or it lies on AP . In
the �rst ase, we have B 6= A, so there remains only the ase in whih B ∈ AP .

Eah of the points Ci either lies on the line AP or lies outside AP . These nonollinear
points annot all lie on AP , so there exists one, all it Q, with Q /∈ AP ; thus Q 6= B. The
point A either lies outside the line BQ or it lies on BQ. In the �rst ase, we have A 6= B
again, so only the ase in whih A ∈ BQ remains.

Sine Q /∈ AP , the lines AP and BQ are distint. The points A and B are both ommon

to eah of these lines; hene A = B.
The onlusion in the following onstrutive version of the Sylvester-Gallai Theorem is

stronger than that usually seen in lassial versions; it gives the result in an a�rmative form.

Rather than merely showing that it is impossible for a third point of the given set to lie on

the seleted line, the proof shows that any point of the set that lies on the seleted line must

be idential with either one or the other of the two seleted points.

Theorem. Let S be any �nite, linearly disrete, nonollinear set of points on the real plane

R
2
. There exist distint points A,B in S suh that the line l = AB passes through only

these two points of S ; for any point X of S that lies on l, either X = A or X = B.

Proof. (i) The lemma shows that the family S is disrete; thus the family P, of all pairs

(Q,R) of distint points in S , is �nite. The ondition linearly disrete then ensures that,

for eah pair (Q,R) in P, the set of points P in S , with P lying outside the line QR, is also
�nite. Thus, from the family of all ordered triads (P,Q,R) of points of S , we may selet

and list those triads with both properties, that Q and R are distint, and that P lies outside

the line QR. Hene the set of triads

T = {(P,Q,R) : P,Q,R ∈ S , Q 6= R, P /∈ QR}

is �nite, and the set

D = {ρ(P,QR) : (P,Q,R) ∈ T }

of positive distanes is also �nite.

De�ne d = minD , and let D be the diameter of S . Sine D is �nite, the minimum

exists onstrutively, but the ounterexample in Setion 5 shows that this minimum need

not be attained by an element of D , although lose approximations may be found. Selet a
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real number e in D , where e = ρ(K,AB) and (K,A,B) ∈ T , suh that e < d
√

1 + d2/D2
.

De�ne l = AB, and let F denote the foot of the perpendiular dropped from the point K
onto the line l.

(ii) Coördinatize the line l so that the point F has oördinate 0, and the metri ρ of R
2

is preserved. Let the oördinates of the points A and B be denoted a and b. Sine A 6= B,
we have a 6= b. By otransitivity, either a 6= 0 or b 6= 0. By symmetry, it su�es to onsider

the �rst ase. Reversing the oördinatization if needed, we may assume that a > 0.
(iii) If the points Y and Z of S lie on the line l with oördinates y and z suh that y ≥ 0

and z ≥ 0, then Y = Z.
To prove this, suppose that y 6= z; it su�es to onsider the ase in whih z < y. Denote

by G the foot of the perpendiular dropped from the point Z onto the line Y K, and de�ne

h = ρ(Z,G). Considering the similar right triangles Y ZG and Y KF , we have

h/y ≤ h/(y − z) = e/
√

y2 + e2

(The inequality relating the extreme terms may also be obtained by omparing the areas of

the triangles Y ZK and Y FK.) Sine d ≤ e and y ≤ ρ(Y,K) ≤ D, it follows that

h ≤ e/
√

1 + e2/y2 ≤ e/
√

1 + d2/D2 < d

However, sine (Z, Y,K) belongs to the set of triads T , we have h ∈ D , so d ≤ h, a
ontradition. Thus y = z.

(iv) Suppose that b > 0. By (iii), we then have B = A, a ontradition. Thus b ≤ 0.
(v) Now let X be any point of S that lies on l, with oördinate x. By otransitivity,

either X 6= A or X 6= B. In the �rst ase, suppose that x > 0. Then it follows from (iii)

that X = A, a ontradition. This shows that x ≤ 0, and thus, by (iii)(reversed), we have

X = B. Similarly, in the seond ase we �nd that X = A.

There are other lassial versions of the Sylvester-Gallai Theorem, and other proofs,

whih might be onstrutivized; see [KelMos58, Wil68, Cha70, Lin88, BorMos90, Chv04,

Pam09℄.
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