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Abstra
t. The Sylvester-Gallai Theorem, stated as a problem by James

Joseph Sylvester in 1893, asserts that for any �nite, non
ollinear set of

points on a plane, there exists a line passing through exa
tly two points of

the set. First, it is shown that for the real plane R
2
the theorem is 
on-

stru
tively invalid. Then, a well-known 
lassi
al proof is examined from a


onstru
tive standpoint, lo
ating the non
onstru
tivities. Finally, a 
on-

stru
tive version of the theorem is established for the plane R
2
; this reveals

the hidden 
onstru
tive 
ontent of the 
lassi
al theorem. The 
onstru
tive

methods used are those proposed by Errett Bishop.
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1. Introdu
tion

The Sylvester-Gallai Theorem states that for any �nite, non
ollinear set of points on a

plane, there exists a line passing through exa
tly two points of the set.

The history of this problem is itself problemati
. The notion, that Gallai was the �rst

to prove the theorem, appears to stem from the submission of the problem to the Ameri
an

Mathemati
al Monthly in 1943 by P. Erd®s [Erd43℄, while unaware of the 1893 statement of

the problem by J. J. Sylvester [Syl93℄. When a solution by R. Steinberg [Ste44℄ was published

in the Monthly in 1944, an Editorial Note stated that Erd®s had �en
losed with the problem

an outline of Grünwald's [Gallai's℄ solution�. This referen
e to a pre-1944 proof by Gallai,

albeit an unpublished outline, appears to be the basis for the designation Sylvester-Gallai

Theorem. This attribution re
urs in a 1982 statement by Erd®s [Erd82, p.208℄, �In 1933 . . . I

told this problem to Gallai who very soon found an ingenious proof �; Gallai's proof, it seems,

was not published. Along with Steinberg's 1944 solution, the Monthly noted that solutions

were also re
eived from R. C. Bu
k and N. E. Steenrod. The earliest known published proof

of the theorem, appearing in 1941, is due to E. Mel
hior [Mel41℄. In the present paper we

a

ede to 
ommon usage, refraining from use of the designation Sylvester-Mel
hior Theorem.
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There have been many di�erent versions and proofs for this theorem. V. Pambu

ian

[Pam09℄, 
ondu
ts reverse analyses of three proofs of the theorem, leading to three di�erent

and in
ompatible axiom systems. J. von Plato [Pla05℄ shows that the theorem holds intu-

itionisti
ally for sets of up to six points in a purely in
iden
e-geometri
 setting, and for up

to seven points in an ordered geometri
 setting. See also [KelMos58, Wil68, Cha70, Lin88,

BorMos90, Chv04℄.

We determine the 
onstru
tive 
ontent of this theorem for the real plane R
2
. First, we

�nd that the theorem is 
onstru
tively invalid. Then we examine L. M. Kelly's 1948 proof,

2

lo
ating the non
onstru
tivities. Finally, adapting Kelly's method, adding an hypothesis,

and using stri
tly 
onstru
tive methods, we obtain a 
onstru
tive version of the theorem.

2. Constru
tive methods

The modern 
onstru
tivist program began with L. E. J. Brouwer (1881-1966) [Bro08℄;

re
ent work, using the stri
test methods, follows the work of Errett Bishop (1928-1983). A

large portion of analysis is 
onstru
tivized by Bishop in Foundations of Constru
tive Analysis

[B67℄; this treatise also serves as a guide for 
onstru
tive work in other �elds. This variety of


onstru
tivism does not form a separate bran
h of mathemati
s, nor is it a bran
h of logi
;

it is intended as an enhan
ed approa
h for all of mathemati
s.

For the distin
tive 
hara
teristi
s of Bishop-type 
onstru
tivism, as opposed to intuition-

ism or re
ursive fun
tion theory, see [BR87℄. Avoiding the Law of Ex
luded Middle (LEM),


onstru
tive mathemati
s is a generalization of 
lassi
al mathemati
s, just as group theory,

a generalization of abelian group theory, avoids the 
ommutative law.
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The initial phase of this program involves the rebuilding of 
lassi
al theories, using only


onstru
tive methods. The entire body of 
lassi
al mathemati
s is viewed as a wellspring of

theories waiting to be 
onstru
tivized.

Every theorem proved with [non
onstru
tive℄ methods presents a 
hallenge: to

�nd a 
onstru
tive version, and to give it a 
onstru
tive proof.

- Errett Bishop [B67, p. x℄

To 
larify the 
onstru
tive methods used here, we give examples of familiar properties of

the real numbers that are 
onstru
tively invalid, and also properties that are 
onstru
tively

valid.

4

The following 
lassi
al properties of a real number α are 
onstru
tively invalid :

(i) Either α < 0 or α = 0 or α > 0.
(ii) If ¬(α = 0), then α 6= 0.

Bishop 
onstru
ts the real numbers using Cau
hy sequen
es. Constru
tively, the relation

α 6= 0 does not refer to negation, but is given a strong a�rmative de�nition; one must


onstru
t an integer n su
h that 1/n < |α|.
Among the resulting 
onstru
tively valid properties of the reals are the following:

(a) For any real number α, if ¬(α 6= 0), then α = 0.

2

Kelly's proof may be found in [Cox48℄ or [Cox61, pp. 65-66℄.

3

Constru
tive methods are des
ribed fully in [B67, B73, BB85℄; see also [R82, BriMin84, M85, R99℄.

4

For more details, and other 
onstru
tive properties of the real number system, see [B67, BB85, BV06℄.
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(b) For any real number α, if ¬(α > 0), then α ≤ 0; if ¬(α < 0), then α ≥ 0.
(
) Let α and β be any real numbers, with α < β. For any real number x, either

x > α or x < β.
(d) Let α and β be any real numbers, with α 6= β. For any real number x, either

x 6= α or x 6= β.
Property (
), known as the Constru
tive Di
hotomy Prin
iple, serves as a 
onstru
tive

substitute for the 
lassi
al Tri
hotomy Property, whi
h is 
onstru
tively invalid. Property

(d), whi
h follows from (
), is 
alled 
otransitivity; it is the 
lassi
al 
ontrapositive of the

transitive relation for equality.

Points A and B on the real plane R
2
are distin
t, written A 6= B, if the distan
e between

them is positive. Points inherit properties from their 
oördinates; thus we have 
otransitivity

for points:

(e) Let A and B be any points on the real plane R
2
, with A 6= B. For any point X,

either X 6= A or X 6= B.

The 
ondition P lies on l, written P ∈ l, means that the distan
e ρ(P, l), from the point

P to the line l, is 0, while P lies outside l, written P /∈ l, means that the distan
e is positive.

The maximum and minimum of two real numbers are easily de�ned, using Cau
hy se-

quen
es. For any real number α, we de�ne α+ = max{α, 0} and α− = max{−α, 0}. At-

tempting to 
onstru
t the maximum or minimum of an arbitrary set of real numbers may,

however, lead to interesting 
ompli
ations. We say that a set is �nite if its elements may be

listed, {a1, a2, ..., an}, with n ≥ 1, but not ne
essarily distin
tly.5 A �nite set of real numbers

has a minimum, but an arbitrary nonvoid subset of a �nite set of real numbers need not

have a 
onstru
tive minimum. Even when a minimum does exist, it need not be attained by

an element in the set. These non
onstru
tivities will be established in Se
tion 5.

3. Constru
tively invalid statements

Brouwerian 
ounterexamples display the non
onstru
tivities in a 
lassi
al theory, indi-


ating feasible dire
tions for 
onstru
tive work. To illustrate the method, we give �rst an

informal example on the plane R
2
.

Example. If, for the real plane R
2
, there is a proof of the statement

For any point P and any line l, either P lies on l, or P lies outside l,

then we have a method that will either prove the Goldba
h Conje
ture, or 
onstru
t a


ounterexample.

Proof. Using a simple �nite routine, 
onstru
t a sequen
e {an}n≥2 su
h that an = 0 if 2n is

the sum of two primes, and an = 1 if it is not. Now apply the statement in question to the

point P = (0,Σan/n
2), with the x-axis as the line l. If P lies on l, then we have proved the

Goldba
h Conje
ture, while if P lies outside l, then we have 
onstru
ted a 
ounterexample.

5

Several di�erent de�nitions and variations of the 
on
ept �nite may be found in the 
onstru
tive litera-

ture. The de�nition here is 
lose to the usual meaning of the term.
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For this reason, su
h statements are said to be 
onstru
tively invalid. If the Goldba
h

question is settled someday, then other famous problems may still be �solved� in this way. The

example above will be applied in Se
tion 5, lo
ating one of the substantial non
onstru
tivities

in a 
lassi
al proof of the Sylvester-Gallai Theorem.

A Brouwerian 
ounterexample is a proof that a given statement implies an omnis
ien
e

prin
iple. In turn, an omnis
ien
e prin
iple would imply solutions or signi�
ant informa-

tion for a large number of well-known unsolved problems. This method was introdu
ed by

Brouwer [Bro08℄ to demonstrate that relian
e on the Law of Ex
luded Middle inhibits math-

emati
s from attaining its full signi�
an
e. The omnis
ien
e prin
iples are spe
ial 
ases of

LEM.

Omnis
ien
e prin
iples are formulated in terms of binary sequen
es. The zeros and ones

may represent the results of a sear
h for a solution to a spe
i�
 problem, as in the example

above. These prin
iples also have equivalent statements in terms of real numbers. The fol-

lowing omnis
ien
e prin
iples will be used here:

Limited prin
iple of omnis
ien
e (LPO). For any binary sequen
e {an}, either an = 0
for all n, or there exists an integer n su
h that an = 1. Equivalently, For any real number

α with α ≥ 0, either α = 0 or α > 0.

Lesser limited prin
iple of omnis
ien
e (LLPO). For any binary sequen
e {an}, either
the �rst integer n su
h that an = 1 (if one exists) is even, or it is odd. Equivalently, For

any real number α, either α ≤ 0 or α ≥ 0.

A statement is 
onsidered 
onstru
tively invalid if it implies an omnis
ien
e prin
iple.

The example above, with slight modi�
ation, shows that the statement in question implies

LPO; thus the statement is 
onstru
tively invalid. When omnis
ien
e prin
iples are involved,

there is no need to mention a spe
i�
 unsolved problem. LPO would solve a great number

of unsolved problems; LLPO would provide unlikely partial solutions.

6

4. Brouwerian 
ounterexample

This will demonstrate that the Sylvester-Gallai Theorem is 
onstru
tively invalid for the

plane R
2
.

Example. The statement,

For any �nite, non
ollinear set of points S on the real plane R
2
, there exists a

line that passes through exa
tly two points of S ,

is 
onstru
tively invalid; the statement implies LLPO.

6

For more details 
on
erning Brouwerian 
ounterexamples, and other omnis
ien
e prin
iples, see [B73,

R02, M89, BV06℄.
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Figure 1. An omnis
ient view of the Brouwerian 
ounterexample. Constru
-

tively, we do not know whether the real number α is < 0, or = 0, or > 0;
the 
lassi
al Tri
hotomy Property is 
onstru
tively invalid. Sin
e we do not

know about α, we 
annot spe
ify a line that passes through exa
tly two points.

Proof. Let α be any real number; either |α| > 0 or |α| < 10−20
. Under the �rst 
ondition,

either α < 0 or α > 0, so we already have the required 
on
lusion; thus we may assume

the se
ond 
ondition. (Although the 
ondition |α| < 1/2 would su�
e to keep the points

in view, the 
ondition 
hosen may bring to mind some unsolved problem in number theory

that has been 
he
ked a long way out.)

De�ne S = {P,Q,R, S, T}, where P = (−1, 0), Q = (1, 0), R = (0, 1), S = (−1 +
|α|, α+), T = (1− |α|, α+). By hypothesis, there exists a line l as spe
i�ed in the statement;

there are at most ten possibilities for l.
Consider �rst the 
ase in whi
h l is one of the four lines RP, RQ, RS, RT, and suppose

that α > 0. Then α+ = |α| > 0, so the point S lies on the line RP , distin
t from both points

R and P . Similarly, the point T lies on the line RQ. Thus l 
ontains three distin
t points
of S , a 
ontradi
tion. It follows that α ≤ 0.

Now 
onsider the 
ase in whi
h l is one of the six lines PQ, PS, PT, QS, QT, ST, and

suppose that α < 0. Then |α| > 0, while α+ = 0, so the points S and T lie on the line PQ,
distin
t from ea
h other and from P and Q. Thus l 
ontains four distin
t points of S , a


ontradi
tion. It follows that α ≥ 0.
Thus the statement implies LLPO.

5. Classi
al proof

To obtain a 
onstru
tive version of the Sylvester-Gallai Theorem, we �rst subje
t Kelly's


lassi
al proof to examination from a 
onstru
tive viewpoint, lo
ating the 
onstru
tively

invalid steps. Kelly's 1948 proof for the plane R
2
is repeated below in brief form (it appears

in [Cox48℄ and [Cox61, pp. 65-66℄). We follow Bishop's suggestion, that theorems and proofs

dependent on the Law of Ex
luded Middle be labeled as su
h.

Proof. [LEM℄ (L. M. Kelly) Let S be a �nite, non
ollinear set of points on the real plane

R
2
, 
onsider all the lines that join two distin
t points of S , and 
onsider the distan
es from

ea
h point of S to ea
h of these lines. The set of all those distan
es that are positive has a

minimum d, attained by at least one line l and one point P . Let E denote the foot of the

perpendi
ular dropped from the point P onto the line l; the segment PE then has length d.
If there are three distin
t points of S that lie on l, then two of these must lie on the same
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side of E. Denote these two points by U and V , with U 
loser to E (possibly at E). Let

h be the distan
e from the point U to the line PV ; then h is one of the positive distan
es


onsidered in determining the minimum d. However, it is apparent that h is less than d, a

ontradi
tion. Thus l 
ontains exa
tly two points of S .

We en
ounter several 
onstru
tive obsta
les in this remarkable proof. First, there is a

problem in joining points to form the 
onne
ting lines, sin
e we 
annot determine whi
h

pairs of given points are distin
t; 
onsidering distan
es, this would dire
tly involve LPO.

If we manage to 
lear the �rst obsta
le, there is then the problem of determining whi
h

points of S are at a positive distan
e from whi
h of the 
onne
ting lines; su
h a determination

was shown to be 
onstru
tively invalid by the example in Se
tion 3. Thus we are unable to

list the positive distan
es as a �nite set of real numbers, in order to 
onstru
t a minimum.

Although the set of positive distan
es may be a nonvoid subset of a �nite set of real

numbers, it would be 
onstru
tively invalid to 
laim that su
h a set has a minimum. For a

Brouwerian 
ounterexample, assume that su
h minimums exist, let α be a real number with

α ≥ 0, and de�ne S = {α, 1}. Either α > 0 or α < 1/2; it su�
es to assume the latter


ondition. De�ne T = {x ∈ S : x > 0}; then T is a nonvoid subset of the �nite set S, so by
hypothesis we may de�ne m = minT . Either m > 1/2 or m < 1. In the �rst 
ase, ¬(α > 0),
so α = 0. In the se
ond 
ase, sin
e m may be 
losely approximated by elements of T , it
follows that α ∈ T , so α > 0. Thus LPO results. In the proof above, if we 
annot show that

the set of positive distan
es is �nite, then we 
annot 
onstru
t a minimum.

Assuming the resolution of the above di�
ulties, there remains a problem with the sele
-

tion of the spe
ial point-line pair. Even when the minimum of a set of real numbers 
an be


onstru
ted, still we 
annot say that this minimum is attained by an element of the set. For

a Brouwerian 
ounterexample, assume that minimums are attained, let α be a real number,

de�ne S = {α+, α−}, and de�ne m = minS. By hypothesis, either m = α+
, and then

¬(α > 0), so α ≤ 0, or m = α−
, and then ¬(α < 0), so α ≥ 0. Thus LLPO results. Thus a

minimum is, in general, not attained; we may only 
onstru
t elements of the set arbitrarily


lose to the minimum. In the proof above, sele
ting the point P and the line l, for only an

approximation e to the minimum d, would disturb the measurements, sin
e then h, while
less than e, would not be known to be less than d.

The �nal 
onstru
tive obsta
le 
on
erns the situation in whi
h three points of the set S

are assumed to lie on the sele
ted line l; the proof must de
ide on whi
h side of the foot E
ea
h point lies. This amounts to de
iding on whi
h side of zero an arbitrary real number

lies, and this is pre
isely the non
onstru
tive omnis
ien
e prin
iple LLPO.

In adapting Kelly's proof, these 
onstru
tive obsta
les will be over
ome by adding an

hypothesis, by sele
ting a su�
iently 
lose approximation to the minimum distan
e, and by

using 
onstru
tive properties of the real numbers.

6. Constru
tive version

Sin
e the Sylvester-Gallai Theorem is 
onstru
tively invalid, a 
onstru
tive version must

be restri
ted to a set of points with additional stru
ture. A set is dis
rete if any two elements

are either equal or distin
t. A set of points S is linearly dis
rete if for any point P in S ,

and for any line l 
onne
ting two distin
t points of S , either P lies on l, or P lies outside l.
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For any set of points, these two 
onditions follow from LEM; thus the 
onstru
tive version

of the theorem will be 
lassi
ally equivalent to the traditional version. Although we require

both additional 
onditions, it will su�
e to spe
ify only the se
ond, as the lemma below will

demonstrate.

A strong de�nition will be used for a non
ollinear set of points: the set 
ontains distin
t

points P,Q,R su
h that P lies outside the line QR. The de�nition of �nite set will be as

given in Se
tion 2.

Lemma. If a non
ollinear set S of points on the real plane R
2
is linearly dis
rete, then it

is dis
rete.

Proof. Let A and B be any points of S .

Sele
t three distin
t, non
ollinear points C1, C2, C3 of S . By 
otransitivity, one of these,


all it P , is distin
t from A. The point B either lies outside the line AP or it lies on AP . In
the �rst 
ase, we have B 6= A, so there remains only the 
ase in whi
h B ∈ AP .

Ea
h of the points Ci either lies on the line AP or lies outside AP . These non
ollinear
points 
annot all lie on AP , so there exists one, 
all it Q, with Q /∈ AP ; thus Q 6= B. The
point A either lies outside the line BQ or it lies on BQ. In the �rst 
ase, we have A 6= B
again, so only the 
ase in whi
h A ∈ BQ remains.

Sin
e Q /∈ AP , the lines AP and BQ are distin
t. The points A and B are both 
ommon

to ea
h of these lines; hen
e A = B.
The 
on
lusion in the following 
onstru
tive version of the Sylvester-Gallai Theorem is

stronger than that usually seen in 
lassi
al versions; it gives the result in an a�rmative form.

Rather than merely showing that it is impossible for a third point of the given set to lie on

the sele
ted line, the proof shows that any point of the set that lies on the sele
ted line must

be identi
al with either one or the other of the two sele
ted points.

Theorem. Let S be any �nite, linearly dis
rete, non
ollinear set of points on the real plane

R
2
. There exist distin
t points A,B in S su
h that the line l = AB passes through only

these two points of S ; for any point X of S that lies on l, either X = A or X = B.

Proof. (i) The lemma shows that the family S is dis
rete; thus the family P, of all pairs

(Q,R) of distin
t points in S , is �nite. The 
ondition linearly dis
rete then ensures that,

for ea
h pair (Q,R) in P, the set of points P in S , with P lying outside the line QR, is also
�nite. Thus, from the family of all ordered triads (P,Q,R) of points of S , we may sele
t

and list those triads with both properties, that Q and R are distin
t, and that P lies outside

the line QR. Hen
e the set of triads

T = {(P,Q,R) : P,Q,R ∈ S , Q 6= R, P /∈ QR}

is �nite, and the set

D = {ρ(P,QR) : (P,Q,R) ∈ T }

of positive distan
es is also �nite.

De�ne d = minD , and let D be the diameter of S . Sin
e D is �nite, the minimum

exists 
onstru
tively, but the 
ounterexample in Se
tion 5 shows that this minimum need

not be attained by an element of D , although 
lose approximations may be found. Sele
t a
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real number e in D , where e = ρ(K,AB) and (K,A,B) ∈ T , su
h that e < d
√

1 + d2/D2
.

De�ne l = AB, and let F denote the foot of the perpendi
ular dropped from the point K
onto the line l.

(ii) Coördinatize the line l so that the point F has 
oördinate 0, and the metri
 ρ of R
2

is preserved. Let the 
oördinates of the points A and B be denoted a and b. Sin
e A 6= B,
we have a 6= b. By 
otransitivity, either a 6= 0 or b 6= 0. By symmetry, it su�
es to 
onsider

the �rst 
ase. Reversing the 
oördinatization if needed, we may assume that a > 0.
(iii) If the points Y and Z of S lie on the line l with 
oördinates y and z su
h that y ≥ 0

and z ≥ 0, then Y = Z.
To prove this, suppose that y 6= z; it su�
es to 
onsider the 
ase in whi
h z < y. Denote

by G the foot of the perpendi
ular dropped from the point Z onto the line Y K, and de�ne

h = ρ(Z,G). Considering the similar right triangles Y ZG and Y KF , we have

h/y ≤ h/(y − z) = e/
√

y2 + e2

(The inequality relating the extreme terms may also be obtained by 
omparing the areas of

the triangles Y ZK and Y FK.) Sin
e d ≤ e and y ≤ ρ(Y,K) ≤ D, it follows that

h ≤ e/
√

1 + e2/y2 ≤ e/
√

1 + d2/D2 < d

However, sin
e (Z, Y,K) belongs to the set of triads T , we have h ∈ D , so d ≤ h, a

ontradi
tion. Thus y = z.

(iv) Suppose that b > 0. By (iii), we then have B = A, a 
ontradi
tion. Thus b ≤ 0.
(v) Now let X be any point of S that lies on l, with 
oördinate x. By 
otransitivity,

either X 6= A or X 6= B. In the �rst 
ase, suppose that x > 0. Then it follows from (iii)

that X = A, a 
ontradi
tion. This shows that x ≤ 0, and thus, by (iii)(reversed), we have

X = B. Similarly, in the se
ond 
ase we �nd that X = A.

There are other 
lassi
al versions of the Sylvester-Gallai Theorem, and other proofs,

whi
h might be 
onstru
tivized; see [KelMos58, Wil68, Cha70, Lin88, BorMos90, Chv04,

Pam09℄.
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