SUPREMA OF LOCATED SETS

MARK MANDELKERN

1. Introduction

It is not always possible to measure the distance p(x, G) between a point x and a set
G in a metric space; sets for which the distance exists for all x are called located. The
concept was introduced by Brouwer [2] and is used extensively in constructive
analysis. For example, although not every nonvoid bounded set of real numbers has a
supremuni, each nonvoid, bounded, located set on the line is easily seen to have a
supremum.

In the case of unbounded sets, suprema are sought in the system R” of extended real
numbers constructed in [3]. In sharp contrast to the bounded case, not all located sets
have suprema in R®; an example was given in [3], where it was also shown that
nonvoid, convex located sets do have suprema.

Here those located sets on the line which have suprema in R® are characterized in
several ways. The main characterization, Theorem 1 below, utilizes the
characterization of located sets given in [4], where closed located sets G on the line are
shown to be precisely those sets of the form

G = Nl(~0,a,] U [b,, +0))
where
(1) ecach open interval (a,, b,) is either void or nonvoid;
2) (a,,b,) and (a,,b,,) are disjoint Whenever n # m;

(3) there exists a sequence {M,} of positive integers such that n < M, whenever
(a,,b,) meets (—k,k) and b, —a, > 1/k.

This is called the notched representation of the located set G, the intervals (a,, b,) are
the notches of G, and the integers M, are called the locating parameters for G.

2. Existence of suprema

It suffices to consider closed located sets. Recall that the notch (a,, b,) is represented
by the extended real numbers a, and b,,, for which, in general, it is not known whether
they are finite or infinite. The following characterization of located sets with suprema
shows that it is just this lack of information which prevents the construction of suprema
for certain located sets. We follow the convention that the void interval is written as
(1,0); this simplifies the statements of results, since then only the nonvoid notches can
have possibly infinite endpoints.

Tueorem 1. Let G be a closed located set on the line, and

G = Nl(=0,a,] U [b,, + )
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its notched representation. Then G has a supremum in R* if and only if each b, is either
finite or infinite.

Proof. First let s = sup G-exist. Considering any n, we may assume that a, < b
If s<b, suppose that b, < + 2. Then b, is a finite endpoint and b, € G,
a contradiction. Hence b, = +o0. If s > a,, then construct a point y in G such that
y > a,; thus y > b, and b, < + 0.

Nowleth, = +worb, < + o0, for all n. We may assume that the sequence {M,] of
locating parameters is increasing. Two cases obtain, depending on whether or not
b, = + oo for some i < M. (This reflects the fact that when s = sup G exists, either G is
bounded above (s < +o0) or G is nonvoid (s > —«).)

Case L. There exists i < M, with b; = +cc. In this case we show that a; = sup G.
(a) Let x € G.Since x > b; is impossible, it follows that x < a;. (b)Lett < a;. Thena,is
a finite endpoint, so g; € G.

Case IL b, < + oo for all n < M. Define an increasing sequence {a,} of zeros and
ones as follows:

(i) put o, =0if b, < +© for all n < M;
(i) put o, = 1if b; = + for some i < M.

Puts, =kifo, =0, and s, = a; when o, = 1. (Note that there can be at most one
b= +w))

We first use the sequence {s,} to define an extended real number s. In the case that
o, = 1, suppose that a; <1. Then (a;,b) meets (—1,1), so i <M, which is a
contradiction and hence a; > — co. Thus {5} is a sequence of finite numbers. To show
that {s,} is an extended Cauchy sequence, we apply [3; Theorem 3].

(1) Leto,=0andn > k. Wheno, = 0,thens, = n > k.Wheno, = 1,thens, = ;.
Suppose that g; < k. Then (a;,b;) meets (—k, k), so i < M, and ¢, = 1, which 1s a
contradiction and hence a; = k.

(2) Let 6, = 1 and n > k. Then s, = s, = a;.

Thus {5} is an extended Cauchy sequence and s = {s,} is an extended real number.

We now show that s = sup G. (a) Let x € G and suppose that x > s. Thens < +
so that there exists k such that g, =1 and s = a,. Thus xe(a;,b), which is a
contradiction and hence x < s. (b) Let t < s. Choose k so that s, —1/k > t. When
o, = 0, consider first the case p(k, G) > 1/2k. Choose n so that a, < k < b,. Then
b,~—a, > 1/k, so n < M, and b, < +o0; thus b,e G with b, > k = 5, > L. Now
consider the case p(k, G) < 1/k. Construct yeG so that p(k,y) < 1/k. Then
y>k—1/k =s—1/k>1. When o, = 1, then s = g; and hence s lies in G.

The following result shows a relation between the located set G and the set G, called
the compression of G, that is, the image of G under the mapping x — X which maps
the line onto the interval (—1, 1) [3; §3]. The proof is routine.

TueoreM 2. A nonvoid located set G on the line has a supremum in R” if and only if
its compression G is located in (—1, 1].
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3. Nonvoid located sets

Notched representations also provide a characterization of nonvoid located sets.
The characterization below shows that the method of notches in [4] for constructing a
located set, yields a nonvoid set provided that no notch is the entire line. That this
intuitively obvious result applies only to located sets is shown by the example following
the proof.

THEOREM 3. Let G bey closed located set on the line withnotches (a,, b,). Then G is
nonvoid if and only if for every n, either a, or b, is finite,

Proof.  Let G be nonvoid and construct z in G. For any n, either z < g, or z > b
thus either a, or b, is finite.

Now let a, or b, be finite for every n. If p(0, G) > 0 then some notch is nonvoid and
thus has a finite endpoint, which lies in G. If p(0,G) < + «, then again G is nonvoid.

The following example shows that the above result does not extend to an arbitrary
set of the form given by a notched representation, even when conditions (1) and (2)in §1
are satisfied. Thus the locating parameters of condition (3) are essential. Let {a,} be an
increasing sequence of zeros and ones. Put (a,.b,) = (1,0) unless » is the first integer
with o, = 1;in that case put(a,,b,) = (—n, n). Although the points g, and b, satisfy the
condition of the theorem, the set G=N({(-w,a]u [y, + 0)) is not nonvoid.

4. Convex sets
An application of Theorem 1 yields a simple proof of [3; Theorem 4].

CoroLLary. Every nonvoid convex located set on the line has g supremum and an
infimum,

Proof.  We Mmay assume that G is closed, since it is easily seen that the closure of
any convex set is also convex. Construct a point z in G and let a, < b, If 7 < a,,
then a,e G. Suppose that b, < + w; then b,e G, contradicting the convexity of G.
Hence b, = + 5. If 2 > b,, then b, < + « |

The condition that G be nonvoid can not be dropped; let {a,} be an increasing
sequence of zeros and ones and consider the set G consisting of all j such that &5 B .
Since G contains at Most one point, it is convex. It is also located: still it has no
supremum in R”. This is another aspect of the fact, noted in the proof of Theorem 1,
that a set with a supremum is either nonvoid or bounded above,

5. Reciprocal sets

Here we relate the existence of the supremum of a located set G of positive points
on the line with the reciprocal set 1/G; first we must consider reciprocals of extended
real numbers,

THEOREM 4. For i extended real numbers t with 0 St + % there correspond
extended real numpers i, also with 0 <T< 4 %, such that
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(i) U<uif and only if ii < t;
() t <wuif and only if it < #;
(i) 7 = r:

(iv) 0 = + o0 and-/k‘%=0;

V) f0<t< +o0, thent = /1.

Proof.  For any t, choose an extended Cauchy sequence {z,} of positive numbers
witht = {t,}. Then {1/t,} is also an extended Cauchy sequence; putf = {1/t,) and the
results follow.

Definition. The extended real number 7 wi]] be called the exrended reciprocal of r,
and will be denoted by 1/t.

The set H is said to approximate the set G to within ¢ if for every point x of G

(respectively H) there is a point y of H (respectively G) such that p(x, ¥) < &. The proof
of the following lemma is routine,

LEMMA.  Let G be g set in a metric space X. Iffor every ¢ > 0 there is alocated set H
in X approximating G to within & then G is locatred.

THEOREM 5. L et G be a located set of positive points on the line. Then G has 4
supremum if and only if 1/G is located.

Proof. First let t = sup G exist. If t <0, then G isvoid. If t > — o, then G is
nonvoid; hence we may apply the characterization of nonvoid located sets given in
[3; Theorem 1]. It suffices to construct, for any positive integer n, a number b > nsuch
that G, = (1/G) " [0, b] is located. Considering P(0, G), construct b > p such that
I/beGorlhe —G.1t suffices to construct,forany e > 0,4 located set H approximat-
ing G, to within € We may assume that ¢ < b, Whep I < + o, G is bounded, hence
H = G, islocated by the continuity of the mapping x — 1/x and [3; Lemma 7]. When
I > 1/e, construct yeGsothaty > 1/e. Then1/b < Y,sothat G n [1/b y]islocated.
Thus H = (1/G) n [1/y, b] is located and approximates G, to within &.

Now let 1/G be located. Put 1=p(0,1/G). When ¢ > 0,.G is bounded: thus some
b; = + «. Thus d; = sup G. When 1 < + o, then I/t = sup G: (a) Let v e G. Then
I/xe1/G,sor < 1/x,and x < 1/t.(b)Let s < 1/t. Since 1/t > 0, we may assume that
52> 0.Then t < 1/s. Construct y e G such that 1/y < 1/s. Hence y >,
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