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1 Introduction

Of the great theories of classical mathematics, projective geometry, with its powerful
concepts of symmetry and duality, has been exceptional in continuing to intrigue investi-
gators. The challenge put forth by Errett Bishop (1928-1983),

Every theorem proved with [nonconstructive] methods presents a challenge:
to find a constructive version, and to give it a constructive proof. [B67, p. x;
BB85, p. 3]

and Bishop’s “Constructivist Manifesto” [B67, Chapter 1; BB85, Chapter 1], motivate a
large portion of current constructive work. This challenge can be answered by discovering
the hidden constructive content of classical projective geometry. Here we briefly outline,
with few details, recent constructive work on the real projective plane, and projective
extensions of affine planes. Special note is taken of a number of interesting open problems
that remain; these show that constructive projective geometry is still a theory very much
in need of further effort.

There has been a considerable amount of work in the constructivization of geometry,
on various topics, in different directions, and from diverse standpoints. For the construc-
tive extension of an affine plane to a projective plane, see [H59, vDal63, M13, M14]. For
the constructive coördinatization of a plane, see [M07]. Intuitionistic axioms for projec-
tive geometry were introduced by A. Heyting [H28], with further work by D. van Dalen
[vDal96]. Work in constructive geometry by M. Beeson [Be10, Be16] uses Markov’s Prin-
ciple, a nonconstructive principle which is accepted in recursive function theory, but not
in the Bishop-type strict constructivism that is adhered to in the present paper. M. Lom-
bard and R. Vesley [LV98] construct an axiom system for intuitionistic plane geometry,
and study it with the aid of recursive function theory. The work of J. von Plato [vPla95,
vPla98, vPla10] in constructive geometry, proceeding from the viewpoint of formal logic,
is related to type theory, computer implementation, and combinatorial analysis. The work
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of V. Pambuccian, e.g., [Pam98, Pam01, Pam03, Pam05, Pam11], also proceeding within
formal logic, covers a wide range of topics concerning axioms for constructive geometry.

The Bishop-type constructive mathematics discussed in the present paper proceeds
from a viewpoint well-nigh opposite that of either formal logic or recursive function theory.
For further details concerning this distinction, see [B65, B67, B73, B75, BB85, BR87].

Part I

Real projective plane

Arend Heyting (1898-1980), in his doctoral dissertation [H28], began the constructiviza-
tion of projective geometry. Heyting’s work involves both synthetic and analytic theories.
Axioms for projective space are adopted; since a plane is then embedded in a space of
higher dimension, it is possible to include a proof of Desargues’s Theorem. For the coördi-
natization of projective space, axioms of order and continuity are assumed. The theory of
linear equations is included, and results in analytic geometry are obtained. Later, Heyting
discussed the role of axiomatics in constructive mathematics as follows:

At first sight it may appear that the axiomatic method cannot be used
in intuitionistic mathematics, because there are only considered mathematical
objects which have been constructed, so that it makes no sense to derive conse-
quences from hypotheses which are not yet realized. Yet the inspection of the
methods which are actually used in intuitionistic mathematics shows us that
they are for an important part axiomatic in nature, though the significance of
the axiomatic method is perhaps somewhat different from that which it has
in classical mathematics. [H59, p. 160]

Recent work [M16, M18], briefly outlined below, constructivized the synthetic theory of
the real projective plane as far as harmonic conjugates, projectivities, the axis of homology,
conics, Pascal’s Theorem, and polarity. Axioms only for a plane are used. The basis for
the constructivization is the extensive literature concerning the classical theory, including
works of O. Veblen and J. W. Young [VY10, Y30], H. S. M. Coxeter [Cox55], D. N.
Lehmer [Leh17], L. Cremona [Cre73], and G. Pickert [Pic75]. An entertaining history of
the classical theory is found in Lehmer’s last chapter.

2 Axioms

For nearly two hundred years a sporadic and sometimes bitter debate has continued,
concerning the value of synthetic versus analytic methods. In his Erlangen program of
1872, Felix Klein sought to mediate the dispute:

The distinction between modern synthetic and modern analytic geometry
must no longer be regarded as essential, inasmuch as both subject-matter and
methods of reasoning have gradually taken a similar form in both. We chose
therefore as common designation of them both the term projective geometry.
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Although the synthetic method has more to do with space-perception and
thereby imparts a rare charm to its first simple developments, the realm of
space-perception is nevertheless not closed to the analytic method, and the
formulae of analytic geometry can be looked upon as a precise and perspicu-
ous statement of geometrical relations. On the other hand, the advantage to
original research of a well formulated analysis should not be underestimated, -
an advantage due to its moving, so to speak, in advance of the thought. But it
should always be insisted that a mathematical subject is not to be considered
exhausted until it has become intuitively evident, and the progress made by
the aid of analysis is only a first, though a very important, step. [Kle72]

In the synthetic work summarized below, axioms are formulated which can be traced to
an analytic model based on constructive properties of the real numbers, and the resulting
axiom system is used to construct a synthetic projective plane P. In this sense, the
construction of the plane P takes into account Bishop’s thesis: “All mathematics should
have numerical meaning” [B67, p. ix; BB85, p. 3].

2.1 Axiom Group C

The constructivization of [M16], resulting in the projective plane P, uses only axioms for
a plane. There exist non-Desarguesian projective planes; see, for example, [Wei07]. This
means that Desargues’s Theorem must be taken as an axiom; it is required to establish the
essential properties of harmonic conjugates. Other special features of the axiom system
are also required, to obtain constructive versions of the most important classical results.
The consistency of the axiom system is verified by means of an analytic model, discussed
below in Section 8; the properties of this model have guided the choice of axioms.

The constructive axiom group C, adopted for the projective plane P in [M16, Section
2], has seven initial axioms. The first four are those usually seen for a classical projective
plane; e.g., two points determine a line, and two lines intersect at a point. The last three
axioms, which have special constructive significance, will be discussed below.

For the construction of the projective plane P, there is given a family P of points
and a family L of lines, along with equality and inequality relations for each family.
The inequality relations assumed for the families P and L , both denoted 6=, are tight
apartness relations; thus, for any elements x, y, z, the following conditions are satisfied:

(i) ¬(x 6= x).
(ii) If x 6= y, then y 6= x.
(iii) If x 6= y, then either z 6= x or z 6= y.
(iv) If ¬(x 6= y), then x = y.

The notion of an apartness relation was introduced by Brouwer [Brou24], and developed
further by Heyting [H66]. Property (iii) is known as cotransitivity, and (iv) as tightness.
The implication “¬(x = y) implies x 6= y” is invalid in virtually all constructive theories,
the inequality being the stronger of the two conditions. For example, with real numbers
considered constructively, x 6= 0 means that there exists an integer n such that 1/n < |x|,
whereas x = 0 means merely that it is contradictory that such an integer exists. For
more details concerning the constructive properties of the real numbers, see [B67, BB85,

4



BV06]; for a comprehensive treatment of constructive inequality relations, see [BR87,
Section 1.2].

A given incidence relation, written P ∈ l, links the two families; we say that the point
P lies on the line l, or that l passes through P . A line is not viewed as a set of points;
the set l of points that lie on a line l is a range of points, while the set Q∗ of lines that
pass through a point Q is a pencil of lines. The outside relation P /∈ l is obtained by a
definition:

Definition. Outside relation. For any point P on the projective plane P, and any
line l, it is said that P lies outside l (and l avoids P ), and written P /∈ l, if P 6= Q for all
points Q that lie on l. [M16, Defn. 2.3]

This condition for the relation P /∈ l, when viewed classically, is simply the negation of
the condition P ∈ l, when written as the tautology “there exists Q ∈ l such that P = Q”.
Constructively, however, the condition acquires a strong, positive significance, derived
from the character of the condition P 6= Q.

Several axioms connect these relations:

Axiom C5. For any lines l and m on the projective plane P, if there exists a point P
such that P ∈ l, and P /∈ m, then l 6= m.

The implication “If ¬(P ∈ l), then P /∈ l” is nonconstructive. However, we have:

Axiom C6. For any point P on the projective plane P, and any line l, if ¬(P /∈ l), then
P ∈ l.

Axiom C6 would be immediate in a classical setting, where P /∈ l means ¬(P ∈ l);
applying the law of excluded middle, a double negation results in an affirmative statement.
For a constructive treatment, where the condition P /∈ l is not defined by negation, but
rather by the affirmative definition above, Axiom C6 must be assumed; it is analogous to
the tightness property of the inequality relations that are assumed for points and lines.

For the metric plane R
2, the condition of Axiom C6 follows from the analogous con-

structive property of the real numbers: “For any real number α, if ¬(α 6= 0), then α = 0”,
interpreting the outside relation in terms of distance. For the analytic model P2(R), which
motivates the axiom system, Axiom C6 is verified using this constructive property of the
real numbers.

The following axiom has a preëminent standing in the axiom system; it is indispens-
able for virtually all constructive proofs involving the projective plane P. The point of
intersection of distinct lines l and m is denoted l ·m.

Axiom C7. If l and m are distinct lines on the projective plane P, and P is a point such
that P 6= l ·m, then either P /∈ l or P /∈ m.

This axiom is a strongly worded, yet classically equivalent, constructive form of a
classical axiom: “distinct lines have a unique common point”, which means only that
if the points P and Q both lie on both lines, then P = Q. Axiom C7, a (classical)
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contrapositive of the classical axiom, is significantly stronger, since the condition P /∈ l is
an affirmative condition.

Heyting and van Dalen have used an apparently weaker version of Axiom C7; it is
Heyting’s Axiom VI [H28], and van Dalen’s Lemma 3(f), obtained using his axiom Ax5
[vDal96]. This weaker version states: “If l and m are distinct lines, P is a point such that
P 6= l ·m, and P ∈ l, then P /∈ m.” However, it is easily shown that the two versions are
equivalent.

Axiom C4 states that at least three distinct points lie on any given line; this is the
usual classical axiom. Then, for the study of projectivities, Axiom E is added, increas-
ing the required number of points to six. Recently, a constructive proof in [M18], of an
essential result concerning harmonic conjugates, required at least eight points on a line;
thus we have:

Problem. Determine the minimum number of points on a line that are required for the
various constructive proofs concerning the projective plane P. Examine the propositions
involved for the exceptional small finite planes.

The axioms and definitions of constructive projective geometry can be given a variety
of different arrangements. For example, in [vDal96] the outside relation P /∈ l is taken as
a primitive notion, and the condition of Axiom C6 above becomes the definition of the
incidence relation P ∈ l. See also [H28, Pam05, Pam11, vPla95].

The axiom system could be extended; thus we have:

Problem. Extend the constructive axiom group C to projective space, and derive
constructive versions of the main classical theorems.

2.2 Desargues’s Theorem

Desargues’s Theorem is assumed as an axiom; the converse is then proved as a conse-
quence.

Two triangles are distinct if corresponding vertices are distinct and corresponding sides
are distinct; it is then easily shown that the three lines joining corresponding vertices are
distinct, and the three points of intersection of corresponding sides are distinct. Distinct
triangles are said to be perspective from the center O if the lines joining corresponding
vertices are concurrent at the point O, and O lies outside each of the six sides. Distinct
triangles are said to be perspective from the axis l if the points of intersection of corre-
sponding sides are collinear on the line l, and l avoids each of the six vertices.

Axiom D. Desargues’s Theorem. If two triangles are perspective from a center, then
they are perspective from an axis.

The proof of the converse is included below, as an example of constructive methods
in geometry.
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Theorem. Converse of Desargues’s Theorem. If two triangles are perspective from
an axis, then they are perspective from a center. [M16, Thm. 3.2]

Proof. We are given distinct triangles PQR and P ′Q′R′, with collinear points of intersec-
tion of corresponding sides, A = QR ·Q′R′, B = PR · P ′R′, C = PQ · P ′Q′, and with all
six vertices lying outside the axis l = AB. Set O = PP ′ ·QQ′.

The points A,Q,Q′ are distinct, and the points B,P, P ′ are distinct. Since Q 6= A =
QR · Q′R′, it follows from Axiom C7 that Q /∈ Q′R′ = AQ′; thus the points A,Q,Q′

are noncollinear, and similarly for B,P, P ′. Since P /∈ AB, we have AB 6= BP . Since
A 6= B = AB · BP , it follows that A /∈ BP , so AQ 6= BP . By symmetry, AQ′ 6= BP ′.
This shows that the triangles AQQ′, BPP ′ are distinct.

The lines AB, PQ, P ′Q′, joining corresponding vertices of the triangles AQQ′, BPP ′,
are concurrent at C. Since Q /∈ AB, we have AB 6= AQ. From C 6= A = AB · AQ, it
follows that C /∈ AQ; by symmetry, C /∈ AQ′. Since Q′ 6= C = PQ · P ′Q′, it follows that
Q′ /∈ PQ; thus QQ′ 6= PQ, i.e., CQ 6= QQ′. From C 6= Q = CQ ·QQ′, we have C /∈ QQ′.
Thus C lies outside each side of triangle AQQ′, and similarly for triangle BPP ′. Thus
the triangles AQQ′, BPP ′ are perspective from the center C.

It follows from Axiom D that the triangles AQQ′, BPP ′ are perspective from the axis
(AQ · BP )(AQ′ · BP ′) = RR′, the axis avoids all six vertices, and O ∈ RR′. Thus the
lines PP ′, QQ′, RR′, joining corresponding vertices of the given triangles, are concurrent
at O. Since Q /∈ RR′, we have Q 6= O. From O 6= Q = QQ′ ·PQ, it follows that O /∈ PQ.
By symmetry, O lies outside each side of the given triangles.

Hence the triangles PQR and P ′Q′R′ are perspective from the center O.

2.3 Duality

Given any statement, the dual statement is obtained by interchanging the words “point”
and “line”. For example:

Dual of Axiom C5. For any points P and Q on the projective plane P, if there exists
a line l such that P ∈ l, and Q /∈ l, then P 6= Q.
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Dual of Axiom C7. Let A and B be distinct points on the projective plane P. If l is a
line such that l 6= AB, then either A /∈ l or B /∈ l.

Clearly, Axiom C6 is self-dual. Duality in a given system is the principle that the dual
of any true statement is also true. Duality of the construction of the plane P, and of the
axiom system, is verified as follows:

Theorem. The definition of the projective plane P is self-dual. The dual of each axiom
in axiom group C is valid on P. [M16, Thm. 2.10]

The dual of the definition of the outside relation P /∈ l is also verified:

Theorem. Let P be any point on the projective plane P, and l any line. Then P /∈ l if
and only if l 6= m for any line m that passes through P . [M16, Thm. 2.11]

3 Harmonic conjugates

In the construction of the projective plane P, harmonic conjugates have an essential role,
with applications to projectivities, involutions, and polarity. In the drawing below, the
quadrangle PQRS, which is often used classically, appears to determine the harmonic
conjugate D of the point C, with respect to the base points A and B. However, this is
only valid when C is distinct from each base point; thus we must use a definition that
applies to every point on the base line AB.

Definition. Let A and B be distinct points on the projective plane P. For any point C
on the line AB, select a line l through C, distinct from AB, and select a point R lying
outside each of the lines AB and l. Set P = BR · l, Q = AR · l, and S = AP · BQ. The
point D = AB ·RS is called the harmonic conjugate of C with respect to the points A,B;
we write D = h(A,B;C). [M16, Defn. 4.1]
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Since the construction of a harmonic conjugate requires the selection of auxiliary
elements, it must be verified that the result is independent of the choice of these auxiliary
elements. The proof given in [M16] for the invariance theorem is incorrect; apart from
the error, the proof there is excessively complicated, and objectionable on several counts.
A correct proof appears in a later paper.

Theorem. Invariance Theorem. Let C be any point on the line AB, and let auxiliary
element selections (l, R) and (l′, R′) be used to construct harmonic conjugates D and D′

of the point C. Then D = D′; the harmonic conjugate construction is independent of the
choice of auxiliary elements. [M18, Thm. 3.2]

In the special case of a point distinct from both base points, constructive harmonic
conjugates can be related to the traditional quadrangle configuration, due to Philippe de
La Hire (1640 – 1718):

Corollary. Let A,B,C,D be collinear points, with A 6= B, and C distinct from each of
the points A and B. Then D = h(A,B;C) if and only if there exists a quadrangle with
vertices outside the line AB, of which two opposite sides intersect at A, two other opposite
sides intersect at B, while the remaining two sides meet the base line AB at C and D.
[M18, Cor. 3.3]

4 Projectivities

The elementary mappings of a projective plane are sections, bijections relating a pencil
of lines with a range of points. Certain combinations of sections result in projections,
mapping a range of points onto another range, projecting from a center, or mapping a
pencil of lines onto another pencil, projecting from an axis. These sections and projections
are the perspectivities of the plane.

The product (composition) of two perspectivities need not be a perspectivity. For
the projective plane P, a finite product of perspectivities is called a projectivity; this is
the definition used by Jean-Victor Poncelet (1788 – 1867) [Pon22]. Subsequently, Karl
Georg Christian von Staudt (1798 – 1867) [vSta47] defined a projectivity as a mapping
of a range or a pencil that preserves harmonic conjugates. Classically, the two notions of
perspectivity are equivalent. Constructively, we have:

Theorem. A projectivity of the projective plane P preserves harmonic conjugates. Thus
every Poncelet projectivity is a von Staudt projectivity. [M16, Thm. 5.3]
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However, the constructive content of the converse is not known; thus we have:

Problem. On the projective plane P, show that every von Staudt projectivity is a
Poncelet projectivity, or construct a counterexample.

It is necessary to establish the existence of projectivities:

Theorem. Given any three distinct points P,Q,R in a range l, and any three distinct
points P ′, Q′, R′ in a range m, there exists a projectivity π : l → m such that the points
P ,Q,R map into the points P ′, Q′, R′, in the order given. [M16, Thm. 5.6]

Classically, the projectivity produced by this theorem is the product of at most three
perspectivities. However, the constructive proof in [M16] requires six perspectivities; thus
we have:

Problem. Determine the minimum number of perspectivities required for the above
theorem.

A projectivity π of order 2 (π2 is the identity ι) is called an involution; this term was
first used by Girard Desargues (1591-1661). In [Des64], Desargues introduced seventy
new geometric terms; they were considered highly unusual, and met with sharp criticism
and ridicule by his contemporaries. Of these seventy terms, involution is the only one to
have survived. One example of an involution is the harmonic conjugate relation:

Theorem. Let A and B be distinct points in a range l, and let υ be the mapping of
harmonic conjugacy with respect to the base points A,B; i.e., set Xυ = h(A,B;X), for
all points X in the range l. Then υ is an involution. [M16, Thm. 7.2]

5 Fundamental Theorem

The fundamental theorem of projective geometry [vSta47] is required for many results,
including Pascal’s Theorem. Classically, the fundamental theorem is derived from axioms
of order and continuity. For the projective plane P, since no axioms of order and con-
tinuity have been adopted, the crucial component of the fundamental theorem must be
derived directly from an axiom:

Axiom T. If a projectivity π of a range or pencil onto itself has three distinct fixed ele-
ments, then it is the identity ι.

Classically, Axiom T is often given the following equivalent form: Let π be a projec-
tivity from a range onto itself, with π 6= ι, and distinct fixed points M and N . If Q is
a point of the range distinct from both M and N , then Qπ 6= Q. Constructively, this
appears to be a stronger statement, since the implication “¬(Qπ = Q) implies Qπ 6= Q”
is constructively invalid; thus we have:
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Problem. Give a proof of the apparently-stronger, alternative statement for Axiom T,
or show that it is constructively stronger.

To prove that the alternative statement is constructively stronger would require a
Brouwerian counterexample. To determine the specific nonconstructivities in a classi-
cal theory, and thereby to indicate feasible directions for constructive work, Brouwerian
counterexamples are used, in conjunction with nonconstructive omniscience principles. A
Brouwerian counterexample is a proof that a given statement implies an omniscience prin-
ciple. In turn, an omniscience principle would imply solutions or significant information
for a large number of well-known unsolved problems. This method was introduced by L.
E. J. Brouwer [Brou08] to demonstrate that use of the law of excluded middle inhibits
mathematics from attaining its full significance. A statement is considered constructively
invalid if it implies an omniscience principle. The omniscience principles can be expressed
in terms of real numbers; the following are most often utilized:

Limited principle of omniscience (LPO). For any real number α, either α = 0 or α 6= 0.

Weak limited principle of omniscience (WLPO). For any real number α, either α = 0
or ¬(α = 0).

Lesser limited principle of omniscience (LLPO). For any real number α, either α ≤ 0
or α ≥ 0.

Markov’s principle. For any real number α, if ¬(α = 0), then α 6= 0.

For work according to Bishop-type strict constructivism, as followed here, these prin-
ciples, consequences of the law of excluded middle, are used only to demonstrate the
nonconstructive nature of certain classical statements, and are not accepted for devel-
oping a constructive theory. Markov’s Principle, however, is used for work in recursive
function theory.

Theorem. Fundamental Theorem. Given any three distinct points P ,Q,R in a range
l, and any three distinct points P ′, Q′, R′ in a range m, there exists a unique projectivity
π : l → m such that the points P ,Q,R map into the points P ′, Q′, R′, in the order given.
[M16, Thm. 6.1]

Proof. The existence of the required projectivity is provided by the second theorem in
Section 4 above. Uniqueness, however, requires Axiom T.

Classically, the fundamental theorem is derived from axioms of order and continuity; thus
we have:

Problem. Introduce constructive axioms of order and continuity for the projective
plane P; derive Axiom T and the fundamental theorem.
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It follows from the fundamental theorem that any projectivity between distinct ranges,
or between distinct pencils, that has a fixed element is a perspectivity [M16, Cor. 6.2]. A
projectivity π such that xπ 6= x, for all elements x, is called nonperspective.

The concept of projectivity is extended to the entire plane. A collineation of the
projective plane P is a bijection of the family P of points, onto itself, that preserves
collinearity and noncollinearity. A collineation σ induces an analogous bijection σ′ of the
family L of lines. A collineation is projective if it induces a projectivity on each range
and each pencil of the plane.

The following theorem is a constructivization of one of the main results in the classical
theory.

Theorem. A projective collineation with four distinct fixed points, each three of which
are noncollinear, is the identity. [M16, Prop. 6.7]

Proof. Let the collineation σ have the fixed points P,Q,R, S as specified; thus the three
distinct lines PQ, PR, PS are fixed. The mapping σ′ induces a projectivity on the pencil
P ∗; by the fundamental theorem, this projectivity is the identity. Thus every line through
P is fixed under σ′; similarly, the same is true for the other three points.

Now let X be any point on the plane. By three successive applications of cotransitivity
for points, we may assume that X is distinct from each of the points P,Q,R. Since
PQ 6= PR, using cotransitivity for lines we may assume that XP 6= PQ. Since Q 6=
P = XP · PQ, it follows from Axiom C7 that Q /∈ XP , and thus XP 6= XQ. Since
X = XP ·XQ, and the lines XP and XQ are fixed under σ′, it follows that σX = X.

Problem. The above theorem ensures the uniqueness of a collineation that maps four
distinct points, each three of which are noncollinear, into four distinct specified points,
each three of which are also noncollinear. Establish the existence of such a collineation
for the projective plane P.

The classical theory of the axis of homology has also been constructivized.

Definition. Let π : l → m be a nonperspective projectivity between distinct ranges on
the projective plane P. Set O = l ·m, V = Oπ, and U = Oπ−1

; then the line h = UV is
called the axis of homology for π. [M16, Defn. 6.4]

The following theorem is the main result concerning the axis of homology; the proof
requires the fundamental theorem.
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Theorem. Let π : l → m be a nonperspective projectivity between distinct ranges on the
projective plane P. If A and B are distinct points on l, each distinct from the common
point O, then the point ABπ · BAπ lies on the axis of homology h. [M16, Thm. 6.5]

6 Conics

The conic sections have a long history; they were discovered by Menaechmus (ca. 340
BC) and studied by the Greek geometers to the time of Pappus of Alexandria (ca. 320
AD). The motivation for Menaechmus’s discovery was a geometrical problem, put forth
by the oracle on the island of Delos, the solution of which would have provided a remedy
for the Athenian plague of 430 BC. Unfortunately, Menaechmus’s solution was too late;
see [Cox55, p. 79] for details.

In the 17th century, an intense new interest in the conics arose in connection with
projective geometry. On a projective plane there is no distinction between the hyperbola,
parabola, and ellipse; these arise only in the affine plane after a line at infinity is removed.
Which of the three forms results depends on whether that line meets the conic at two,
one, or no points.

6.1 Construction of a conic

Conics on the projective plane P are defined by means of projectivities, using the method
of Jakob Steiner (1796 – 1863) [Ste32]. Alternatively, in classical works conics are often
defined by means of polarities, using the method of von Staudt; see the problem stated
at the end of Section 7 below.
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Definition. (Steiner) Let π : U∗ → V ∗ be a nonperspective projectivity between distinct
pencils of lines on the projective plane P. The conic κ = κ(π;U, V ) defined by π is the
locus of points {l · lπ : l ∈ U∗}. For any point X on P, we will say that X lies outside κ,
written X /∈ κ, if X 6= Y for all points Y on κ. [M16, Defn. 8.1]

Problem. This definition, with the assumption that the given projectivity is nonper-
spective, produces what is usually called a non-singular conic. Singular conics await
constructive investigation.

6.2 Properties

The next theorem establishes an essential property of a conic, an analogue of the tightness
property for inequalities; it can be viewed as an extension of Axiom C6: “If ¬(P /∈ l), then
P ∈ l.”

Theorem. Let κ = κ(π;U, V ) be a conic on the projective plane P. For any point X on
P, if ¬(X /∈ κ), then X ∈ κ. [M16, Prop. 8.2(d)]

Proof. Let X be a point on the plane such that ¬(X /∈ κ). By cotransitivity and symme-
try, we may assume that X 6= U . Set z = UX; then Z = z · zπ is a point of κ. Suppose
that X 6= Z.

We now show that X 6= Y for any point Y of κ. Either Y 6= X or Y 6= U . We need
to consider only the second case; set y = UY , it follows that Y = y · yπ. Either Y 6= X
or Y 6= Z; again, it suffices to consider the second case. Since Y 6= Z = z · zπ, it follows
from Axiom C7 that either Y /∈ z or Y /∈ zπ. In the first subcase, y 6= z. In the second
subcase, yπ 6= zπ, and since π is a bijection we again have y 6= z. Since X 6= U = y · z, it
follows that X /∈ y, and thus X 6= Y .
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The above shows that X /∈ κ, contradicting the hypothesis. It follows that X = Z,
and hence X ∈ κ.

Using this theorem and other preliminary results, many well-known classical results
are obtained constructively; for example, the following basic result:

Theorem. There exists a unique conic containing any given five distinct points, each
three of which are noncollinear. [M16, Prop. 8.3]

6.3 Pascal’s Theorem

Perhaps the most widely-known classical result concerning conics is the following, due to
Blaise Pascal (1623-1662) [Pas39]; it also has a constructive proof.

Theorem. Pascal’s Theorem. Let a simple hexagon ABCDEF be inscribed in a conic
κ. Then the three points of intersection of the pairs of opposite sides are distinct and
collinear. [M16, Thm. 9.2]

According to legend, Pascal gave in addition some four hundred corollaries. Only one
has been constructivized, it recalls a traditional construction method for drawing a conic
“point by point” on paper; for example, as in [Y30, p. 68].

15



Corollary. Let A,B,C,D,E be five distinct points of a conic κ. If l is a line through E
that avoids each of the other four points, and l passes through a distinct sixth point F of
κ, then

F = l · A(CD · (AB ·DE)(BC · l)).

[M16, Cor. 9.3]

Proof. The Pascal line p of the hexagon ABCDEF passes through the three distinct
points X = AB ·DE, Y = BC ·EF , and Z = CD ·AF . Since A /∈ CD, we have A 6= Z,
and it follows that AF = AZ. Since B /∈ CD, we have BC 6= CD, so by cotransitivity for
lines either p 6= BC or p 6= CD. In the first case, since C /∈ EF , we have C 6= Y = BC ·p,
and it follows from Axiom C7 that C /∈ p. Thus in both cases we have CD 6= p, and
Z = CD · p. Finally,

F = EF · AF = l ·AZ = l · A(CD · p)

= l · A(CD ·XY ) = l · A(CD · (AB ·DE)(BC · l))

7 Polarity

The role of symmetry in projective geometry reaches a peak of elegance in the theory of
polarity, introduced by von Staudt in 1847.

A correlation is a mapping of the points of the projective plane to the lines, together
with a mapping of the lines to the points, that preserves collinearity and concurrence.
The correlation is involutory if it is of order 2, and is then called a polarity. A conic
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determines a polarity; each point of the plane has a corresponding polar, and each line
has a corresponding pole.

7.1 Tangents and secants

The construction of poles and polars determined by a conic is dependent upon the exis-
tence of tangents and secants. A line t that passes through a point P on a conic κ is said
to be tangent to κ at P if P is the unique point of κ that lies on t. A line that passes
through two distinct points of a conic κ is a secant of κ. For the construction of poles
and polars, it has been necessary to adopt an additional axiom:

Axiom P. The tangents at any three distinct points of a conic are nonconcurrent.

Problem. Determine whether this axiom can be derived from the others.

The tangents and secants to a conic are related by means of projectivities; the tangent
at a point on a conic is the projective image of any secant through the point:

Theorem. Let κ be a conic on the projective plane P, P a point on κ, and t a line passing
through P . The line t is tangent to κ at P if and only if for any point Q of κ with Q 6= P ,
if s is the secant QP , and π is the nonperspective projectivity such that κ = κ(π;Q,P ),
then t = sπ. [M16, Prop. 10.2(b)]

This theorem ensures the existence of tangents. To establish the existence of secants,
it is first shown that a line through a point on a conic, if not the tangent, is a secant:

Lemma. Let κ be a conic on the projective plane P, P a point on κ, and t the tangent to
κ at P . If l is a line passing through P , and l 6= t, then l passes through a second point
R of κ, distinct from P ; thus l is a secant of κ. [M16, Lm. 10.9]

Using this lemma, the next theorem will provide the secants needed for the following
results. The need for this theorem contrasts with complex geometry, where every line
meets every conic.

Theorem. Let κ be a conic on the projective plane P. Through any given point P of the
plane, at least two distinct secants of κ can be constructed. [M16, Thm. 10.10(a)]

Proof. Select distinct points A,B,C on κ, with tangents a, b, c. By Axiom P, these tan-
gents are nonconcurrent; thus the points E = a ·b and F = b ·c are distinct. Either P 6= E
or P 6= F ; it suffices to consider the first case. By Axiom C7, either P /∈ a or P /∈ b. It
suffices to consider the first subcase; thus P 6= A and PA 6= a. It follows from the lemma
that PA is a secant.

Denote the second point of PA that lies on κ by R, and choose distinct points A′, B′, C ′

on κ, each distinct from both A and R. With these three points, construct a secant through
P using the above method; we may assume that it is PA′. Since A′ /∈ AR = PA, it follows
that PA′ 6= PA.
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7.2 Construction of polars and poles

The traditional method for defining a polar uses an inscribed quadrangle, and must con-
sider separately points on or outside a conic. Constructively, this method is not available;
thus polars are constructed by means of harmonic conjugates.

The discussion of harmonic conjugates in Section 3 included an invariance theorem
to show that the result of the construction is independent of the selection of auxiliary
elements. Now, the definition of the polar of a point must be shown to be independent of
the choice of an auxiliary secant; the proof requires the invariance theorem for harmonic
conjugates.

Theorem. Construction of a polar. Let κ be a conic on the projective plane P, and
let P be any point on the plane. Through the point P , construct a secant q of κ. Denote
the intersections of q with κ by Q1 and Q2, and let the tangents at these points be denoted
q1 and q2. Set Q = q1 · q2. Set Q′ = h(Q1, Q2;P ), the harmonic conjugate of P with
respect to the base points Q1, Q2. Then the line p = QQ′ is independent of the choice of
the secant q. [M16, Thm. 11.1]

Definition. Let κ be a conic on the projective plane P, and let P be any point on the
plane. The line p = QQ′ in the above theorem is called the polar of P with respect to κ.
[M16, Defn. 11.2]

Note that if P lies on κ, then the polar of P is the tangent to κ at P . The corollary
below will relate this constructive theory of polars to a classical construction that uses
quadrangles. The three diagonal points of a quadrangle are the intersection points of
the three pairs of opposite sides. We adopt Fano’s Axiom: The diagonal points of any
quadrangle are noncollinear. Gino Fano (1871-1952) studied finite projective planes, some
of which do not satisfy Fano’s Axiom.
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Corollary. Let κ be a conic on the projective plane P, and let P be any point outside κ.
Inscribe a quadrangle in κ with P as one diagonal point. Then the polar of P is the line
p joining the other two diagonal points. [M16, Cor. 11.4]

Any three distinct points on a conic are noncollinear [M16, Prop. 8.2(b)]. Thus, if
P is any diagonal point of a quadrangle inscribed in a conic κ, it follows that ¬(P ∈ κ).
However, it does not immediately follow that P lies outside κ; thus we have:

Problem. If κ is a conic on the projective plane P, and P is a diagonal point of a
quadrangle inscribed in κ, show that P /∈ κ.

Definition. Let κ be a conic on the projective plane P, and l any line on P. A construction
analogous to that of the above theorem results in a point L, called the pole of l with respect
to κ. [M16, Defn. 11.5]

The following theorem shows that any conic on the plane P determines a polarity:

Theorem. Let κ be a conic on the projective plane P. If the line p is the polar of the
point P , then P is the pole of p, and conversely. [M16, Thm. 11.6(a)]

The definition of conic in Section 6 used the Steiner method [Ste32], with projectiv-
ities. Later, von Staudt [vSta47] defined a conic by means of a polarity: a point lies on
the conic if its polar passes through the point. Classically, the two definitions produce
the same conics; thus we have:

Problem. Construct correlations and polarities based on the axioms for the projective
plane P, develop the theory of conics constructively using the von Staudt definition, and
prove that von Staudt conics are equivalent to the Steiner conics constructed in Section
6.1 above.
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8 Consistency of the axiom system

The consistency of the axiom system for the synthetic projective plane P is established by
an analytic model. A projective plane P

2(R) is built from subspaces of the linear space
R

3, using only constructive properties of the real numbers. The axioms adopted for the
synthetic plane P have been chosen to reflect the properties of the analytic plane P

2(R),
taking note of Bishop’s thesis, “All mathematics should have numerical meaning” [B67,
p. ix; BB85, p. 3].

The model is built following well-known classical methods, adding constructive refine-
ments to the definitions and proofs. The analytic plane P

2(R) consists of a family P2

of points, and a family L2 of lines; a point P in P2 is a subspace of dimension 1 of the
linear space R

3, a line λ in L2 is a subspace of dimension 2. The inequality relations, the
incidence relation, and the outside relation are defined by means of vector operations. All
the essential axioms adopted for the synthetic plane P, and all the required properties,
such as cotransitivity, tightness, and duality, are verified.

Theorem. Axiom group C, and Axioms F, D, E, T, are valid on the analytic projective
plane P

2(R). [M16, Thm. 14.2]

The Brouwerian counterexample below shows that on the plane P
2(R) the validity

of Axiom C3, which ensures the existence of a common point for any two distinct lines,
is dependent on the restriction to distinct lines. By duality, the two statements of the
example are equivalent. The proof of the first statement is easier to visualize, and can be
described informally as follows: On R

2, thought of as a portion of P2(R), consider two
points which are extremely near or at the origin, with P on the x-axis, and Q on the y-axis.
If P is very slightly off the origin, and Q is at the origin, then the x-axis is the required line.
In the opposite situation, the y-axis would be required. In any conceivable constructive
routine, such a large change in the output, resulting from a minuscule variation of the
input, would reveal a severe discontinuity, and a strong indication that the statement in
question is constructively invalid.

Example. On the analytic projective plane P2(R), the following statements are construc-
tively invalid:

(i) Given any points P and Q, there exists a line that passes through both points.
(ii) Given any lines λ and µ, there exists a point that lies on both lines.

[M16, Example 14.1]

Proof. By duality, it will suffice to consider the second statement. When the non-zero
vector t = (t1, t2, t3) spans the point T in P

2(R), we write T = 〈t〉 = 〈t1, t2, t3〉. When the
vectors u, v span the line λ, and w = u× v, we write λ = [w] = [w1, w2, w3]. The relation
T ∈ λ is defined by the inner product, t · w = 0.

Let α be any real number, and set α+ = max{α, 0}, and α− = max{−α, 0}. Define
lines λ = [α+, 0, 1] and µ = [0, α−, 1]. By hypothesis, we have a point T = 〈t〉 = 〈t1, t2, t3〉
that lies on both lines. Thus α+t1 + t3 = 0, and α−t2 + t3 = 0. If t3 6= 0, then we have
both α+ 6= 0 and α− 6= 0, an absurdity; thus t3 = 0. This leaves two cases. If t1 6= 0, then
α+ = 0, so α ≤ 0, while if t2 6= 0, then α− = 0, so α ≥ 0. Hence LLPO results.

20



Problem. Develop the theory of conics for the analytic plane P
2(R); compare the re-

sults with those for the synthetic plane P. On the plane P2(R), determine the constructive
validity of Axiom P of Section 7 above.

Problem. For the analytic projective plane P
2(R), apply constructive methods to the

study of harmonic conjugates, cross ratios, and other topics of classical projective geom-
etry.

Problem. Although the model P2(R) establishes the consistency of the axiom system
used for the projective plane P, it remains to prove the independence of the axiom system,
or to reduce it to an independent system.

Part II

Projective extensions

The notion of infinity has mystified finite humans for millennia. On the analytic projective
plane P

2(R), where points and lines are merely lines and planes through the origin in R
3,

it is no surprise to notice that any two distinct lines meet at a unique point. However, to
envision two parallel lines on R

2 meeting at infinity requires some imagination. Johannes
Kepler (1571 – 1630) invented the term “focus” in regard to ellipses, and stated that a
parabola also has two foci, with one at infinity. This idea was extended by Poncelet,
leading to the concepts of a line at infinity, and a projective plane.

In the classical theory, a projective extension of an affine plane is a fairly simple
matter: each pencil of parallel lines determines a point at infinity, at which the lines meet,
and these points form the line at infinity. A projective plane results, and the required
projective axioms are satisfied. The extension of the metric plane R2 to a projective plane
is often described heuristically, with lamps and shadows; see, for example, [Cox55, Section
1.3].

There have been at least three constructive attempts to extend an affine plane to
a projective plane. An extension by A. Heyting [H59] uses elements called “projective
points” and “projective lines”. The extension constructed in [M14] uses elements called
“prime pencils” and “virtual lines”, resulting in a projective plane with different properties.
The analytic projective plane P

2(R) discussed in Section 8 above, constructed using sub-
spaces of R3, can be viewed as an extension of the metric plane R

2; it also has distinctive
properties.

The differences between these several extensions involve the crucial axiom concern-
ing the existence of a point common to two lines, and the cotransitivity property. The
statement that any two distinct lines have a common point is called the Common Point
Property (CPP), while the Strong Common Point Property (SCPP) is the same state-
ment without the restriction to distinct lines. The analytic extension P

2(R) of R2 satisfies
both CPP and cotransitivity, but not SCPP. Neither synthetic extension satisfies both
cotransitivity and CPP. The Heyting extension satisfies cotransitivity, but the essential
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axiom CPP has not been verified. On the virtual line extension, CPP is satisfied, and
even SCPP; however, cotransitivity is constructively invalid, and this is now seen as a
serious limitation. The analytic extension P

2(R) could be taken as a standard; one might
demand that the basic properties of P

2(R) hold in any acceptable synthetic extension,
and then neither of the two synthetic extensions would suffice.

Problem. Construct a synthetic projective extension of an affine plane which has the
usual properties of a projective plane, including both the common point property and
cotransitivity.

9 Heyting extension

In [H59], A. Heyting adopts axioms for both affine and projective geometry. Then, from
a plane affine geometry (P,L ), Heyting constructs an extension (Π,Λ), consisting of
projective points of the form

P(l, m) = {n ∈ L : n ∩ l = l ∩m or n ∩m = l ∩m}

where l, m ∈ L with l 6= m, and projective lines of the form

λ(A,B) = {Q ∈ Π : Q ∩ A = A ∩B or Q ∩B = A ∩B}

where A,B ∈ Π with A 6= B.
With the Heyting definition of projective point, if the original two lines l and m

intersect, then P(l, m) is the pencil of all lines passing through the point of intersection,
while if the lines are parallel, then P(l, m) is the pencil of all lines parallel to the original
two. In these cases, the definition determines either a finite point of the extension, or
a point on the line at infinity. More significant is the fact that even when the status of
the two original lines is not known constructively, still a projective point is (potentially)
determined. Heyting comments on the need for this provision as follows:

. . . serious difficulties . . . are caused by the fact that not only points
at infinity must be adjoined to the affine plane, but also points for which it is
unknown whether they are at infinity or not. [H59, p. 161]

A projective line is determined by two distinct projective points. The definition is based
on the lines common to the two projective points; i.e., the lines common to two pencils
of lines. For example, in the simplest case, if the two projective points are finite, then
these are the pencils of lines through distinct points in the original affine plane, and
there is a single common line, connecting these finite points, of which the projective line
is an extension. In the case of two distinct pencils of parallel lines; the pencils have
no common line, each determines a point at infinity, and the resulting projective line is
the line at infinity. Again, even when the status of the original projective points is not
known constructively, still a projective line is determined. The distinctive, and perhaps
limiting, features of the Heyting extension are the requirements that the construction of
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a projective point depends on a given pair of distinct finite lines, and the construction of
a projective line depends on a pair of distinct projective points previously constructed.

Nearly all the axioms for a projective plane are then verified, although the most es-
sential axiom, which states that two distinct lines have a common point, escapes proof.
The axiom considered in [H59] is the weaker version, designated above as the common
point property, CPP, involving distinct lines. In [M13], Heyting’s axioms for affine ge-
ometry are verified for R

2, and a Brouwerian counterexample is given for the Heyting
extension, showing that the stronger form of the axiom, SCPP, involving arbitrary lines,
is constructively invalid, with the following attempted justification:

This counterexample concerns the full common point axiom, rather than
the limited Axiom P3 as stated in [H59], where only distinct lines are con-
sidered. An investigation into the full axiom is necessary for a constructive
study based upon numerical meaning, as proposed by Bishop. Questions of
distinctness are at the core of constructive problems; any attempted projec-
tive extension of the real plane is certain to contain innumerable pairs of lines
which may or may not be distinct. [M13, p. 113]

However, taking note of the analytic model P2(R), for which CPP is verified, but SCPP
is constructively invalid, CPP now appears as a reasonable goal for an extension; thus we
have:

Problem. Complete the study of the projective extension of [H59]; verify Heyting’s
Axiom P3 (CPP), or construct a Brouwerian counterexample.

10 Virtual line extension

Any attempt to build a constructive projective extension of an affine plane encounters
difficulties due to the indeterminate nature of arbitrary pencils of lines. Classically, a
pencil of lines is either the family of lines passing through a given point, or a family of
parallel lines. An example of a family of lines is easily formed from two lines which might
be distinct, intersecting or parallel, or might be identical. To obtain the strong common
point property, SCPP, in a constructive projective extension, the corresponding pencil
must include both these lines, so that it will determine a point of the extension common
to both extended lines, whether distinct or not. Thus the definition of pencil must not
depend upon a pair of lines previously known to be distinct.

In the projective extension of [M14], the definition of pencil is further generalized;
rather than depending upon specific finite lines, it involves the intrinsic properties of a
family of lines. Included are pencils of unknown type, with non-specific properties, and
pencils for which no lines are known to have been previously constructed.

The definition of line in the extension is independent of the definition of point; it will
depend directly upon a class of generalized lines in the finite plane, called virtual lines.
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10.1 Definition

The virtual line extension of [M14] is based on a incidence plane G =(P,L ), consisting
of a family P of points and a family L of lines, with constructive axioms, definitions,
conventions, and results as delineated in [M07].

Definition. Let G =(P,L ) be an incidence plane.
• For any point Q ∈ P, define

Q∗ = {l ∈ L : Q ∈ l}.

• For any line l ∈ L , define
l∗ = {m ∈ L : m ‖ l}.

• A family of lines of the form Q∗, or of the form l∗, is called a regular pencil.
• A family of lines α is called a pencil if it contains no fewer than two lines, and satisfies
the following condition: If l and m are distinct lines in α with l, m ∈ ρ, where ρ is a
regular pencil, then α ⊂ ρ.
• A pencil of the form Q∗ is called a point pencil.
• A pencil α with the property that l ‖ m, for any lines l and m in α, is called a parallel
pencil.
[M14, Defn. 2.1]

In the extension, a point pencil Q∗, consisting of all lines through Q, will represent
the original finite point Q. A pencil l∗, consisting of all lines parallel to the line l, will
result in an infinite point. However, the extension also admits parallel pencils which need
not arise from given lines, but which nevertheless result in points at infinity.

10.2 Virtual lines

A problem that arises in the construction of a projective extension is the difficulty in
determining the nature of an arbitrary line in the extension, by means of an object in
the original plane. If a line λ on the extended plane contains a finite point, then the set
λf , of all finite points on λ, is a line in the original plane. However, if λ is the line at
infinity, then λf is void. Since constructively it is in general not known which is the case,
we adopt the following:

Definition. A set p of points in P is said to be a virtual line if it satisfies the following
condition: If p is inhabited, then p is a line. [M14, Defn. 3.1]

Given any virtual lines p and q, one can construct a pencil ϕ(p, q) that contains each
of the virtual lines p and q, if it is a line [M14, Thm. 3.4].

The notion of virtual line also helps in resolving a problem that arises in connection
with pencils of lines. The family of lines common to two distinct pencils may consist of
a single line (as in the case of two point pencils, or a point pencil and a regular parallel
pencil), or it may be void (as in the case of two regular parallel pencils); constructively,
it is in general unknown which alternative holds. The following definition provides a tool
for dealing with this situation.
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Definition. For any distinct pencils α and β, define

α ⊓ β = {Q ∈ P : Q ∈ l ∈ α ∩ β for some line l ∈ L }.

The set of points α ⊓ β is called the core of the pair of pencils α, β. [M14, Defn. 3.2]

The core, as a set of finite points (which might be void), is a constructive substitute
for a possible line that is common to two pencils.

Theorem. For any distinct pencils α and β, the core α ⊓ β is a virtual line. [M14, Lm.
3.3]

10.3 Extension

Points of the extension, called e-points, are defined using a selected class of pencils of
lines, called prime pencils; the prime pencil α determines the e-point α. Lines in the
extension are not formed from previously constructed e-points; they are direct extensions
of objects in the original plane. Lines of the extension, called e-lines, are defined using
a selected class of virtual lines, called prime virtual lines; the prime virtual line p in the
finite plane determines the e-line λp in the extended plane.

The projective plane G ∗ = (P∗,L ∗), where P∗ is the family of e-points, and L ∗ is
the family of e-lines, is the projective extension of the incidence plane G =(P,L ). The
axioms of projective geometry are verified for the extension. The following theorems are
the main results; the proof outlines will exhibit the symmetry of the construction, and
the utility of adopting independent definitions for e-points and e-lines.

Theorem. On the projective extension G
∗ of the plane G , there exists a unique e-line

passing through any two distinct e-points. [M14, Thm. 5.3]

Proof outline. The given e-points α and β originate from pencils α and β; the core p = α⊓β
of these pencils is a virtual line on the finite plane. This virtual line p determines an e-line
λp in the extension, which passes through both e-points α and β.

Theorem. On the projective extension G ∗ of the plane G , any two e-lines have an e-point
in common. If the e-lines are distinct, then the common e-point is unique. [M14, Thm.
5.5]

Proof outline. The given e-lines λp and λq originate from virtual lines p and q; these
virtual lines determine a pencil γ = ϕ(p, q) of lines on the finite plane. This pencil γ
determines an e-point γ in the extension, which lies on both e-lines λp and λq.

Several definitions in [M14] involve negativistic concepts; for example, Definition 2.1
for pencil, and Definition 3.1 for distinct virtual lines. Can this be avoided? Generally in
constructive mathematics one tries to avoid negativistic concepts, but perhaps some are
unavoidable in constructive geometry; thus we have:

Problem. Modify the virtual line extension so as to avoid negativistic concepts as far
as possible.
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10.4 The cotransitivity problem

There is what might be called an irregularity of the extension plane G ∗, the constructive
invalidity of cotransitivity; this is revealed by a Brouwerian counterexample:

Example. On the virtual line projective extension of the plane R
2, the cotransitivity

property for e-points is constructively invalid. [M14, p. 705]

Proof. Given any real number c, construct the virtual line

p = {(t, 0) : t ∈ R and c = 0} ∪ {(0, t) : t ∈ R and c 6= 0}

and consider the e-point γ determined by the pencil γ = ϕ(p, p).
Let the x-axis be denoted by l0; the pencil l∗0 of horizontal lines then determines the

e-point l∗0. Similarly, we have the y-axis m0, the pencil m∗

0 of vertical lines, and the e-point
m∗

0. By hypothesis, γ 6= l∗0 or γ 6= m∗

0. In the first case, suppose that c = 0. Then p is the
x-axis and γ = l∗0, a contradiction; thus we have ¬(c = 0). In the second case, we find
that c = 0. Hence WLPO results.

Problem. Modify the virtual line extension, so that the common point property and
cotransitivity are both valid. It is then likely that the strong common point property will
not be valid; in that case, provide a Brouwerian counterexample.

11 Analytic extension

The analytic projective plane P
2(R) described in Section 8 is constructed from subspaces

of the linear space R
3, using only constructive properties of the real numbers. This

projective plane can be viewed as an extension of the affine plane R
2.
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The plane z = 1 in R
3 is viewed as a copy of R

2. A point P on the plane z = 1
corresponds to the point P ′ of the extension P

2(R) that, as a line through the origin in
R

3, contains P . A point of P2(R), that is a horizontal line through the origin in R
3, is

an infinite point of the extension. A line l on the plane z = 1 corresponds to the line l′

of P2(R) that, as a plane through the origin in R
3, contains l. The line of intersection of

this plane with the xy-plane is the point at infinity on l′. In this way, P2(R) is seen as a
projective extension of R2, with the xy-plane as the line at infinity.

The plane P
2(R) satisfies both the common point property and cotransitivity. How-

ever, as a projective extension of the specific plane R
2, it does not provide an extension

of an arbitrary affine plane; thus we have:

Problem. Construct a synthetic projective extension of an arbitrary affine plane, hav-
ing both the common point property and the cotransitivity property.
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